MySQL优化 — exists与in谁快谁慢?

Posted My Database Support

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MySQL优化 — exists与in谁快谁慢?相关的知识,希望对你有一定的参考价值。


    相信很多开发人员或DBA经常为exists与in到底谁效率比较高而感到困扰。
    而exists和in是半连接(SEMI JOIN),什么是半连接?半连接就是两张表进行关联只返回一个表的数据。所以半连接也属于表连接,既然是表连接,我们就需要关心两表的大小以及两表之间究竟走什么连接方式,从而有目的地去控制两表之间的连接方式,才能随心所欲地优化SQL。

 in/exists语句分析
-- in语句select a.* from aaa a where a.id in ( select id from bbb b);-- exists语句select a.* from aaa a where exists (select null from bbb b where b.id=a.id);
  •  IN操作相当于对inner table执行一个带distinct的子查询,然后得到的查询结果集再与outer table进行连接,连接方式的索引的使用就等同于普通的两表之间的连接。
  • EXISTS操作相当于对outer table进行全表扫描,用从中检索到的每一行与inner table做循环匹配输出响应的符合条件的结果,其主要开销是对outer table的全表扫描,exists()会执行a.length次,它不缓存exists()的结果集,因为其结果集不重要,重要的是结果集中是否有记录。

实验与结论
测试对象
数据库版本 5.7.31 
mysql的employees数据库来测试,其中外键约束已删除

测试结果
/* 子表数据量小,外表数据量大*//* FirstMatch是mysql在处理半连接的时候使用的一种优化策略 */mysql> explain select count(*) from salaries a where a.emp_no in (select b.emp_no from employees b) ;+----+-------------+-------+------------+-------+---------------+---------+---------+--------------------+--------+----------+-------------+| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |+----+-------------+-------+------------+-------+---------------+---------+---------+--------------------+--------+----------+-------------+| 1 | SIMPLE | b | NULL | index | PRIMARY | PRIMARY | 4 | NULL | 299113 | 100.00 | Using index || 1 | SIMPLE | a | NULL | ref | PRIMARY | PRIMARY | 4 | employees.b.emp_no | 9 | 100.00 | Using index |+----+-------------+-------+------------+-------+---------------+---------+---------+--------------------+--------+----------+-------------+2 rows in set, 1 warning (0.00 sec)mysql> select count(*) from salaries a where a.emp_no in (select b.emp_no from employees b) ;+----------+| count(*) |+----------+| 2844047 |+----------+1 row in set (1.29 sec)/* 子表数据量小,外表数据量大*/mysql> explain select count(*) from salaries a where exists (select 1 from employees b where b.emp_no=a.emp_no);+----+--------------------+-------+------------+--------+---------------+---------+---------+--------------------+---------+----------+--------------------------+| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |+----+--------------------+-------+------------+--------+---------------+---------+---------+--------------------+---------+----------+--------------------------+| 1 | PRIMARY | a | NULL | index | NULL | PRIMARY | 7 | NULL | 2838426 | 100.00 | Using where; Using index || 2 | DEPENDENT SUBQUERY | b | NULL | eq_ref | PRIMARY | PRIMARY | 4 | employees.a.emp_no | 1 | 100.00 | Using index |+----+--------------------+-------+------------+--------+---------------+---------+---------+--------------------+---------+----------+--------------------------+2 rows in set, 2 warnings (0.00 sec)
mysql> select count(*) from salaries a where exists (select 1 from employees b where b.emp_no=a.emp_no);+----------+| count(*) |+----------+| 2844047 |+----------+1 row in set (2.82 sec)/* 子表与外表数量差不多,30w*/mysql> select count(*) from employees a where exists (select 1 from dept_emp b where b.emp_no=a.emp_no) ;+----------+| count(*) |+----------+| 300024 |+----------+1 row in set (0.35 sec)/* 子表与外表数量差不多,30w*/mysql> select count(*) from employees a where a.emp_no in (select b.emp_no from dept_emp b) ;+----------+| count(*) |+----------+| 300024 |+----------+1 row in set (0.26 sec)
/* 外表数量少,内表数量多*/mysql> select count(*) from dept_emp_part a where a.emp_no in (select emp_no from employees b);+----------+| count(*) |+----------+| 52245 |+----------+1 row in set (0.17 sec)
mysql> select count(*) from dept_emp_part a where exists (select null from employees b where a.emp_no=b.emp_no);+----------+| count(*) |+----------+| 52245 |+----------+1 row in set (0.07 sec)



结论
  • 子表数据量比外表数据量少,使用in效率更高。

  • 子表数据量比外表数据量大,使用exists;但是注意到in语句优化器会将半连接转化成内连接(可以转化成内连接查看下执行计划),此时使用的仍然是子表的索引。

  • 子表与外表数据量大小差不多,in与exists效率差别不大,但是总的还是in稍快点,因为in在内存里操作。

  • 5.7版本in语句优化器会将半连接转化成内连接,in == 内连接+FirstMatch

  • 外循环的数量越少越好


案例分析
# Time: 2020-11-13T02:52:51.749743Z# Query_time: 17.635067 Lock_time: 0.000626 Rows_sent: 1 Rows_examined: 70501201SET timestamp=1605235971;SELECT bp.id package_id, bm.id bid_id,        ... -- 此处省略N多标量子查询字段        FROM bid_package bpInner LEFT JOIN lib_agencys la ON bpInner.agent_id = la.id LEFT JOIN sys_company sc ON la.company_id = sc.id LEFT JOIN sys_company_depart scd ON bpInner.pm_dept_id = scd.id WHERE bpInner.purchase_mode IN ( '10', '20', '30', '40', '50', '70', '80', '90' ) AND bpInner.is_auth_dept_inner = '1' ) t GROUP BY package_id ) j ON j.package_id = bp.id LEFT JOIN ( SELECT bpInner.id package_id, GROUP_CONCAT( sc.company_name ) candidate_suppliers FROM bgg_invite_bidder bib, bgg_invite_main bim, bid_package bpInner, sys_company sc WHERE 1 = 1 AND bpInner.id = bim.package_id AND bim.id = bib.invite_main_id AND bib.supplier_cp_id = sc.id AND bpInner.is_deleted = '0' AND bpInner.is_auth_dept_inner='1' AND bim.is_deleted = '0' AND bib.is_deleted = '0' AND sc.is_deleted = '0' AND bim.invite_status IN ( '25', '26', '32' ) GROUP BY bpInner.id ) cs ON bp.id = cs.package_id WHERE bm.is_deleted = '0' AND bp.is_deleted = '0' AND bm.is_auth_dept_inner = '1' AND bm.id = bp.bid_id        and (bm.create_user_id = xxxxx or EXISTS (SELECT 1 FROM bid_main_operator bmo WHERE bmo.is_deleted=0 AND bmo.package_id=bp.id AND bmo.operator_id=xxxxx)) ORDER BY bp.Create_time DESC LIMIT 50;

执行计划


存在问题
exits后的子查询仅返回一条记录,但是执行计划显示子查询的表依赖外层的查询结果进行了3669次全表扫描,其中 bid_main_operator表记录数约为20w条,不存在二级辅助索引。执行时间复杂度为o(3669*200000),每次执行时间长达17~20s也就是意料之中的事了。

优化措施
  1. bid_main_operator(operator_id)创建辅助索引;

  2. exists改写为in


优化效果

优化查询速度从20s左右提升到毫秒级(仅exists改成in)。


以上是关于MySQL优化 — exists与in谁快谁慢?的主要内容,如果未能解决你的问题,请参考以下文章

MySQL数据库优化总结详解

MySQL数据库优化总结详解

MySQL数据库优化总结详解

Java 性能调优必备利器——JMH

MYSQL IN 与 EXISTS 的优化示例

MySQL优化:索引失效分析in与exists使用场合