2021年最新-可解释机器学习相关研究最新论文书籍博客资源整理分享

Posted 深度学习与NLP

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2021年最新-可解释机器学习相关研究最新论文书籍博客资源整理分享相关的知识,希望对你有一定的参考价值。

    理解(interpret)表示用可被认知(understandable)的说法去解释(explain)或呈现(present)。在机器学习的场景中,可解释性(interpretability)就表示模型能够使用人类可认知的说法进行解释和呈现。[Finale Doshi-Velez]

    机器学习模型被许多人称为“黑盒”。这意味着虽然我们可以从中获得准确的预测,但我们无法清楚地解释或识别这些预测背后的逻辑。但是我们如何从模型中提取重要的见解呢?要记住哪些事项以及我们需要实现哪些功能或工具?这些是在提出模型可解释性问题时会想到的重要问题。

2021年最新-可解释机器学习相关研究最新论文、书籍、博客、资源整理分享

    本文整理了可解释机器学习相关领域最新的论文,书籍、资源、博客等,分享给需要朋友。



    本资源含了近年来热门的可解释人工智能(XAI)的前沿研究。从下图我们可以看到可解释/可解释AI的趋势。关于这个主题的出版物正在蓬勃发展。

2021年最新-可解释机器学习相关研究最新论文、书籍、博客、资源整理分享


    下图展示了XAI的几个用例。在这里,根据这个数字将出版物分成几个类别。

2021年最新-可解释机器学习相关研究最新论文、书籍、博客、资源整理分享


研究性论文

    The elephant in the interpretability room: Why use attention as explanation when we have saliency methods, EMNLP Workshop 2020


    Explainable Machine Learning in Deployment, FAT 2020


    A brief survey of visualization methods for deep learning models from the perspective of Explainable AI, Information Visualization 2020


    Explaining Explanations in AI, ACM FAT 2019


    Machine learning interpretability: A survey on methods and metrics, Electronics, 2019


    A Survey on Explainable Artificial Intelligence (XAI): Towards Medical XAI, IEEE TNNLS 2020


    Interpretable machine learning: definitions, methods, and applications, Arxiv preprint 2019


    Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers, IEEE Transactions on Visualization and Computer Graphics, 2019


    Explainable Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI, Information Fusion, 2019


    Evaluating Explanation Without Ground Truth in Interpretable Machine Learning, Arxiv preprint 2019


    A survey of methods for explaining black box models, ACM Computing Surveys, 2018


    Explaining Explanations: An Overview of Interpretability of Machine Learning, IEEE DSAA, 2018


    Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI), IEEE Access, 2018


    Explainable artificial intelligence: A survey, MIPRO, 2018


    How Convolutional Neural Networks See the World — A Survey of Convolutional Neural Network Visualization Methods, Mathematical Foundations of Computing 2018


    Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models, Arxiv 2017


    Towards A Rigorous Science of Interpretable Machine Learning, Arxiv preprint 2017


    Explaining Explanation, Part 1: Theoretical Foundations, IEEE Intelligent System 2017


    Explaining Explanation, Part 2: Empirical Foundations, IEEE Intelligent System 2017


    Explaining Explanation, Part 3: The Causal Landscape, IEEE Intelligent System 2017


    Explaining Explanation, Part 4: A Deep Dive on Deep Nets, IEEE Intelligent System 2017


    An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data, Ecological Modelling 2004


    Review and comparison of methods to study the contribution of variables in artificial neural network models, Ecological Modelling 2003


书籍

    Explainable Artificial Intelligence (xAI) Approaches and Deep Meta-Learning Models, Advances in Deep Learning Chapter 2020


    Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer 2019


    Explanation in Artificial Intelligence: Insights from the Social Sciences, 2017 arxiv preprint


    Visualizations of Deep Neural Networks in Computer Vision: A Survey, Springer Transparent Data Mining for Big and Small Data 2017


    Explanatory Model Analysis Explore, Explain and Examine Predictive Models


    Interpretable Machine Learning A Guide for Making Black Box Models Explainable


    An Introduction to Machine Learning Interpretability An Applied Perspective on Fairness, Accountability, Transparency,and Explainable AI


开源课程

    Interpretability and Explainability in Machine Learning, Harvard University


文章

    We mainly follow the taxonomy in the survey paper and divide the XAI/XML papers into the several branches.


    1. Transparent Model Design

    2. Post-Explanation

    2.1 Model Explanation(Model-level)

    2.2 Model Inspection

    2.3 Outcome Explanation

    2.3.1 Feature Attribution/Importance(Saliency Map)

    2.4 Neuron Importance

    2.5 Example-based Explanations

    2.5.1 Counterfactual Explanations(Recourse)

    2.5.2 Influential Instances

    2.5.3 Prototypes&Criticisms

    Uncategorized Papers on Model/Instance Explanation

    Does Explainable Artificial Intelligence Improve Human Decision-Making?, AAAI 2021


    Incorporating Interpretable Output Constraints in Bayesian Neural Networks, NeuIPS 2020


    Towards Interpretable Natural Language Understanding with Explanations as Latent Variables, NeurIPS 2020


    Learning identifiable and interpretable latent models of high-dimensional neural activity using pi-VAE, NeurIPS 2020


    Generative causal explanations of black-box classifiers, NeurIPS 2020


    Learning outside the Black-Box: The pursuit of interpretable models, NeurIPS 2020


    Explaining Groups of Points in Low-Dimensional Representations, ICML 2020


    Explaining Knowledge Distillation by Quantifying the Knowledge, CVPR 2020


    Fanoos: Multi-Resolution, Multi-Strength, Interactive Explanations for Learned Systems, IJCAI 2020


    Machine Learning Explainability for External Stakeholders, IJCAI 2020


    Py-CIU: A Python Library for Explaining Machine Learning Predictions Using Contextual Importance and Utility, IJCAI 2020


    Machine Learning Explainability for External Stakeholders, IJCAI 2020


    Interpretable Models for Understanding Immersive Simulations, IJCAI 2020


    Towards Automatic Concept-based Explanations, NIPS 2019


    Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead, Nature Machine Intelligence 2019


    Interpretml: A unified framework for machine learning interpretability, arxiv preprint 2019


    All Models are Wrong, but Many are Useful: Learning a Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously, JMLR 2019


    On the Robustness of Interpretability Methods, ICML 2018 workshop


    Towards A Rigorous Science of Interpretable Machine Learning, Arxiv preprint 2017


    Object Region Mining With Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach, CVPR 2017


    LOCO, Distribution-Free Predictive Inference For Regression, Arxiv preprint 2016


    Explaining data-driven document classifications, MIS Quarterly 2014


评测方法

    Evaluations and Methods for Explanation through Robustness Analysis, arxiv preprint 2020


    Evaluating and Aggregating Feature-based Model Explanations, IJCAI 2020


    Sanity Checks for Saliency Metrics, AAAI 2020


    A benchmark for interpretability methods in deep neural networks, NIPS 2019


    Methods for interpreting and understanding deep neural networks, Digital Signal Processing 2017


    Evaluating the visualization of what a Deep Neural Network has learned, IEEE Transactions on Neural Networks and Learning Systems 2015


Python开源库

    AIF360: https://github.com/Trusted-AI/AIF360, 


    AIX360: https://github.com/IBM/AIX360, 


    Anchor: https://github.com/marcotcr/anchor, scikit-learn 


    Alibi: https://github.com/SeldonIO/alibi 


    Alibi-detect: https://github.com/SeldonIO/alibi-detect 


    BlackBoxAuditing: https://github.com/algofairness/BlackBoxAuditing, scikit-learn 


    Boruta-Shap: https://github.com/Ekeany/Boruta-Shap, scikit-learn 


    casme: https://github.com/kondiz/casme, Pytorch 


    Captum: https://github.com/pytorch/captum, Pytorch, 


    cnn-exposed: https://github.com/idealo/cnn-exposed, Tensorflow 


    DALEX: https://github.com/ModelOriented/DALEX, 


    Deeplift: https://github.com/kundajelab/deeplift, Tensorflow, Keras


    DeepExplain: https://github.com/marcoancona/DeepExplain, Tensorflow, Keras 


    Deep Visualization Toolbox: https://github.com/yosinski/deep-visualization-toolbox, Caffe, 


    Eli5: https://github.com/TeamHG-Memex/eli5, Scikit-learn, Keras, xgboost, lightGBM, catboost etc.


    explainx: https://github.com/explainX/explainx, xgboost, catboost 


    Grad-cam-Tensorflow: https://github.com/insikk/Grad-CAM-tensorflow, Tensorflow 


    Innvestigate: https://github.com/albermax/innvestigate, tensorflow, theano, cntk, Keras 


    imodels: https://github.com/csinva/imodels, 


    InterpretML: https://github.com/interpretml/interpret 


    interpret-community: https://github.com/interpretml/interpret-community 


    Integrated-Gradients: https://github.com/ankurtaly/Integrated-Gradients, Tensorflow 


    Keras-grad-cam: https://github.com/jacobgil/keras-grad-cam, Keras 


    Keras-vis: https://github.com/raghakot/keras-vis, Keras 


    keract: https://github.com/philipperemy/keract, Keras 


    Lucid: https://github.com/tensorflow/lucid, Tensorflow 


    LIT: https://github.com/PAIR-code/lit, Tensorflow, specified for NLP Task 


    Lime: https://github.com/marcotcr/lime, Nearly all platform on Python 


    LOFO: https://github.com/aerdem4/lofo-importance, scikit-learn 


    modelStudio: https://github.com/ModelOriented/modelStudio, Keras, Tensorflow, xgboost, lightgbm, h2o 


    pytorch-cnn-visualizations: https://github.com/utkuozbulak/pytorch-cnn-visualizations, Pytorch 


    Pytorch-grad-cam: https://github.com/jacobgil/pytorch-grad-cam, Pytorch 


    PDPbox: https://github.com/SauceCat/PDPbox, Scikit-learn 


    py-ciu:https://github.com/TimKam/py-ciu/, 


    PyCEbox: https://github.com/AustinRochford/PyCEbox 


    path_explain: https://github.com/suinleelab/path_explain, Tensorflow 


    rulefit: https://github.com/christophM/rulefit, 


    rulematrix: https://github.com/rulematrix/rule-matrix-py, 


    Saliency: https://github.com/PAIR-code/saliency, Tensorflow 


    SHAP: https://github.com/slundberg/shap, Nearly all platform on Python  


    Skater: https://github.com/oracle/Skater 


    TCAV: https://github.com/tensorflow/tcav, Tensorflow, scikit-learn 


    skope-rules: https://github.com/scikit-learn-contrib/skope-rules, Scikit-learn 


    TensorWatch: https://github.com/microsoft/tensorwatch.git, Tensorflow 


    tf-explain: https://github.com/sicara/tf-explain, Tensorflow 


    Treeinterpreter: https://github.com/andosa/treeinterpreter, scikit-learn, 


    WeightWatcher: https://github.com/CalculatedContent/WeightWatcher, Keras, Pytorch 


    What-if-tool: https://github.com/PAIR-code/what-if-tool, Tensorflow


    XAI: https://github.com/EthicalML/xai, scikit-learn 


    Related Repositories

    https://github.com/jphall663/awesome-machine-learning-interpretability, 


    https://github.com/lopusz/awesome-interpretable-machine-learning, 


    https://github.com/pbiecek/xai_resources, 


    https://github.com/h2oai/mli-resources, 

2021年最新-可解释机器学习相关研究最新论文、书籍、博客、资源整理分享
扫描下方二维码可以订阅哦!
2021年最新-可解释机器学习相关研究最新论文、书籍、博客、资源整理分享
2021年最新-可解释机器学习相关研究最新论文、书籍、博客、资源整理分享

DeepLearning_NLP

2021年最新-可解释机器学习相关研究最新论文、书籍、博客、资源整理分享

深度学习与NLP

以上是关于2021年最新-可解释机器学习相关研究最新论文书籍博客资源整理分享的主要内容,如果未能解决你的问题,请参考以下文章

附pdf下载 | 中文版《可解释的机器学习》

论文推荐最新十篇机器翻译相关论文—自然语言推理无监督神经机器翻译多任务学习局部卷积图卷积多语种机器翻译

书籍 | 推荐系统将向何处去?

书籍 | 推荐系统将向何处去?

超级有用速存 最新大数据/数据挖掘/机器学习相关资源

书籍 | 推荐系统将向何处去?