源码三维LeNet-5网络的预训练神经网络工具箱模型

Posted MATLAB的科学与工程应用

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了源码三维LeNet-5网络的预训练神经网络工具箱模型相关的知识,希望对你有一定的参考价值。

我们实现的2D LeNet-5模型在其训练集上训练后,在灰度MNIST测试集上的准确率达到98.48%。为了将预先训练好的二维LeNet-5(MNIST)的可学习参数转换为三维LeNet-5,我们在三维空间中复制了二维滤波器(重复复制)。这是可能的,因为视频或3D图像可以被转换成图像切片序列。在训练过程中,我们期望3D LeNet-5在每一帧中学习模式。这个模型有大约26万个可学习的参数

Our implementation of 2D LeNet-5 model achieved 98.48% accuracy on the grey-scale MNIST test set after training on its train set. To transfer the learnable parameters from pre-trained 2D LeNet-5 (MNIST) to 3D one, we duplicated 2D filters (copying them repeatedly) through the third dimension. This is possible since a video or a 3D image can be converted into a sequence of image slices. In the training process, we expect that the 3D LeNet-5 learns patterns in each frame. This model has about 260,000 learnable parameters.


simply, call "lenet5TL3Dfun()" function.


参考文献:

Ebrahimi, Amir, et al. “Introducing Transfer Learning to 3D ResNet-18 for Alzheimer’s Disease Detection on MRI Images.” 2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ), IEEE, 2020, doi:10.1109/ivcnz51579.2020.9290616.


以上是关于源码三维LeNet-5网络的预训练神经网络工具箱模型的主要内容,如果未能解决你的问题,请参考以下文章

通过PyTorch构建的LeNet-5网络对手写数字进行训练和识别

卷积神经网络Lenet-5实现

卷积神经网络 LeNet-5各层参数详解

DL4J实战之三:经典卷积实例(LeNet-5)

CNN之Lenet5

Pytorch多卡训练