[K8s]何为Kubernetes?
Posted 若水三千
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[K8s]何为Kubernetes?相关的知识,希望对你有一定的参考价值。
Kubernetes 是什么?
Kubernetes 是一个可移植的、可扩展的开源平台,用于管理容器化的工作负载和服务,可促进声明式配置和自动化。 Kubernetes 拥有一个庞大且快速增长的生态系统。Kubernetes 的服务、支持和工具广泛可用。
Kubernetes 这个名字源于希腊语,意为“舵手”或“飞行员”。k8s 这个缩写是因为 k 和 s 之间有八个字符的关系。 Google 在 2014 年开源了 Kubernetes 项目。Kubernetes 建立在Google 在大规模运行生产工作负载方面拥有十几年的经验的基础上,结合了社区中最好的想法和实践。
时光回溯
让我们回顾一下为什么 Kubernetes 如此有用。
传统部署时代:
早期,各个组织机构在物理服务器上运行应用程序。无法为物理服务器中的应用程序定义资源边界,这会导致资源分配问题。
例如,如果在物理服务器上运行多个应用程序,则可能会出现一个应用程序占用大部分资源的情况,结果可能导致其他应用程序的性能下降。一种解决方案是在不同的物理服务器上运行每个应用程序,但是由于资源利用不足而无法扩展,并且维护许多物理服务器的成本很高。
虚拟化部署时代:
作为解决方案,引入了虚拟化。虚拟化技术允许你在单个物理服务器的 CPU 上运行多个虚拟机(VM)。 虚拟化允许应用程序在 VM 之间隔离,并提供一定程度的安全,因为一个应用程序的信息 不能被另一应用程序随意访问。
虚拟化技术能够更好地利用物理服务器上的资源,并且因为可轻松地添加或更新应用程序 而可以实现更好的可伸缩性,降低硬件成本等等。
每个 VM 是一台完整的计算机,在虚拟化硬件之上运行所有组件,包括其自己的操作系统。
容器部署时代:
容器类似于 VM,但是它们具有被放宽的隔离属性,可以在应用程序之间共享操作系统(OS)。 因此,容器被认为是轻量级的。容器与 VM 类似,具有自己的文件系统、CPU、内存、进程空间等。 由于它们与基础架构分离,因此可以跨云和 OS 发行版本进行移植。
容器因具有许多优势而变得流行起来。下面列出的是容器的一些好处:
- 敏捷应用程序的创建和部署:与使用 VM 镜像相比,提高了容器镜像创建的简便性和效率。
- 持续开发、集成和部署:通过快速简单的回滚(由于镜像不可变性),支持可靠且频繁的 容器镜像构建和部署。
- 关注开发与运维的分离:在构建/发布时而不是在部署时创建应用程序容器镜像, 从而将应用程序与基础架构分离。
- 可观察性:不仅可以显示操作系统级别的信息和指标,还可以显示应用程序的运行状况和其他指标信号。
- 跨开发、测试和生产的环境一致性:在便携式计算机上与在云中相同地运行。
- 跨云和操作系统发行版本的可移植性:可在 Ubuntu、RHEL、CoreOS、本地、 Google Kubernetes Engine 和其他任何地方运行。
- 以应用程序为中心的管理:提高抽象级别,从在虚拟硬件上运行 OS 到使用逻辑资源在 OS 上运行应用程序。
- 松散耦合、分布式、弹性、解放的微服务:应用程序被分解成较小的独立部分, 并且可以动态部署和管理 - 而不是在一台大型单机上整体运行。
- 资源隔离:可预测的应用程序性能。
- 资源利用:高效率和高密度。
为什么需要 Kubernetes,它能做什么?
容器是打包和运行应用程序的好方式。在生产环境中,你需要管理运行应用程序的容器,并确保不会停机。 例如,如果一个容器发生故障,则需要启动另一个容器。如果系统处理此行为,会不会更容易?
这就是 Kubernetes 来解决这些问题的方法! Kubernetes 为你提供了一个可弹性运行分布式系统的框架。 Kubernetes 会满足你的扩展要求、故障转移、部署模式等。 例如,Kubernetes 可以轻松管理系统的 Canary 部署。
Kubernetes 为你提供:
-
服务发现和负载均衡
Kubernetes 可以使用 DNS 名称或自己的 IP 地址公开容器,如果进入容器的流量很大, Kubernetes 可以负载均衡并分配网络流量,从而使部署稳定。 -
存储编排
Kubernetes 允许你自动挂载你选择的存储系统,例如本地存储、公共云提供商等。 -
自动部署和回滚
你可以使用 Kubernetes 描述已部署容器的所需状态,它可以以受控的速率将实际状态 更改为期望状态。例如,你可以自动化 Kubernetes 来为你的部署创建新容器, 删除现有容器并将它们的所有资源用于新容器。 -
自动完成装箱计算
Kubernetes 允许你指定每个容器所需 CPU 和内存(RAM)。 当容器指定了资源请求时,Kubernetes 可以做出更好的决策来管理容器的资源。 -
自我修复
Kubernetes 重新启动失败的容器、替换容器、杀死不响应用户定义的 运行状况检查的容器,并且在准备好服务之前不将其通告给客户端。 -
密钥与配置管理
Kubernetes 允许你存储和管理敏感信息,例如密码、OAuth 令牌和 ssh 密钥。 你可以在不重建容器镜像的情况下部署和更新密钥和应用程序配置,也无需在堆栈配置中暴露密钥。
Kubernetes 不是什么
Kubernetes 不是传统的、包罗万象的 PaaS(平台即服务)系统。 由于 Kubernetes 在容器级别而不是在硬件级别运行,它提供了 PaaS 产品共有的一些普遍适用的功能, 例如部署、扩展、负载均衡、日志记录和监视。 但是,Kubernetes 不是单体系统,默认解决方案都是可选和可插拔的。 Kubernetes 提供了构建开发人员平台的基础,但是在重要的地方保留了用户的选择和灵活性。
Kubernetes:
- 不限制支持的应用程序类型。 Kubernetes 旨在支持极其多种多样的工作负载,包括无状态、有状态和数据处理工作负载。 如果应用程序可以在容器中运行,那么它应该可以在 Kubernetes 上很好地运行。
- 不部署源代码,也不构建你的应用程序。 持续集成(CI)、交付和部署(CI/CD)工作流取决于组织的文化和偏好以及技术要求。
- 不提供应用程序级别的服务作为内置服务,例如中间件(例如,消息中间件)、 数据处理框架(例如,Spark)、数据库(例如,mysql)、缓存、集群存储系统 (例如,Ceph)。这样的组件可以在 Kubernetes 上运行,并且/或者可以由运行在 Kubernetes 上的应用程序通过可移植机制(例如, 开放服务代理)来访问。
- 不要求日志记录、监视或警报解决方案。 它提供了一些集成作为概念证明,并提供了收集和导出指标的机制。
- 不提供或不要求配置语言/系统(例如 jsonnet),它提供了声明性 API, 该声明性 API 可以由任意形式的声明性规范所构成。
- 不提供也不采用任何全面的机器配置、维护、管理或自我修复系统。
- 此外,Kubernetes 不仅仅是一个编排系统,实际上它消除了编排的需要。 编排的技术定义是执行已定义的工作流程:首先执行 A,然后执行 B,再执行 C。 相比之下,Kubernetes 包含一组独立的、可组合的控制过程, 这些过程连续地将当前状态驱动到所提供的所需状态。 如何从 A 到 C 的方式无关紧要,也不需要集中控制,这使得系统更易于使用 且功能更强大、系统更健壮、更为弹性和可扩展。
Kubernetes 组件
当你部署完 Kubernetes, 即拥有了一个完整的集群。
一个 Kubernetes 集群由一组被称作节点的机器组成。这些节点上运行 Kubernetes 所管理的容器化应用。集群具有至少一个工作节点。
工作节点托管作为应用负载的组件的 Pod 。控制平面管理集群中的工作节点和 Pod 。 为集群提供故障转移和高可用性,这些控制平面一般跨多主机运行,集群跨多个节点运行。
本文档概述了交付正常运行的 Kubernetes 集群所需的各种组件。
这张图表展示了包含所有相互关联组件的 Kubernetes 集群。
控制平面组件(Control Plane Components)
控制平面的组件对集群做出全局决策(比如调度),以及检测和响应集群事件(例如,当不满足部署的 replicas 字段时,启动新的 pod)。
控制平面组件可以在集群中的任何节点上运行。 然而,为了简单起见,设置脚本通常会在同一个计算机上启动所有控制平面组件, 并且不会在此计算机上运行用户容器。 请参阅使用 kubeadm 构建高可用性集群 中关于多 VM 控制平面设置的示例。
kube-apiserver
API 服务器是 Kubernetes 控制面的组件, 该组件公开了 Kubernetes API。 API 服务器是 Kubernetes 控制面的前端。
Kubernetes API 服务器的主要实现是 kube-apiserver。 kube-apiserver 设计上考虑了水平伸缩,也就是说,它可通过部署多个实例进行伸缩。 你可以运行 kube-apiserver 的多个实例,并在这些实例之间平衡流量。
etcd
etcd 是兼具一致性和高可用性的键值数据库,可以作为保存 Kubernetes 所有集群数据的后台数据库。
您的 Kubernetes 集群的 etcd 数据库通常需要有个备份计划。
要了解 etcd 更深层次的信息,请参考 etcd 文档。
kube-scheduler
控制平面组件,负责监视新创建的、未指定运行节点(node)的 Pods,选择节点让 Pod 在上面运行。
调度决策考虑的因素包括单个 Pod 和 Pod 集合的资源需求、硬件/软件/策略约束、亲和性和反亲和性规范、数据位置、工作负载间的干扰和最后时限。
kube-controller-manager
运行控制器进程的控制平面组件。
从逻辑上讲,每个控制器都是一个单独的进程, 但是为了降低复杂性,它们都被编译到同一个可执行文件,并在一个进程中运行。
这些控制器包括:
- 节点控制器(Node Controller): 负责在节点出现故障时进行通知和响应
- 任务控制器(Job controller): 监测代表一次性任务的 Job 对象,然后创建 Pods 来运行这些任务直至完成
- 端点控制器(Endpoints Controller): 填充端点(Endpoints)对象(即加入 Service 与 Pod)
- 服务帐户和令牌控制器(Service Account & Token Controllers): 为新的命名空间创建默认帐户和 API 访问令牌
cloud-controller-manager
云控制器管理器是指嵌入特定云的控制逻辑的控制平面组件。 云控制器管理器使得你可以将你的集群连接到云提供商的 API 之上, 并将与该云平台交互的组件同与你的集群交互的组件分离开来。
cloud-controller-manager 仅运行特定于云平台的控制回路。 如果你在自己的环境中运行 Kubernetes,或者在本地计算机中运行学习环境, 所部署的环境中不需要云控制器管理器。
与 kube-controller-manager 类似,cloud-controller-manager 将若干逻辑上独立的 控制回路组合到同一个可执行文件中,供你以同一进程的方式运行。 你可以对其执行水平扩容(运行不止一个副本)以提升性能或者增强容错能力。
下面的控制器都包含对云平台驱动的依赖:
- 节点控制器(Node Controller): 用于在节点终止响应后检查云提供商以确定节点是否已被删除
- 路由控制器(Route Controller): 用于在底层云基础架构中设置路由
- 服务控制器(Service Controller): 用于创建、更新和删除云提供商负载均衡器
Node 组件
节点组件在每个节点上运行,维护运行的 Pod 并提供 Kubernetes 运行环境。
kubelet
一个在集群中每个节点(node)上运行的代理。 它保证容器(containers)都 运行在 Pod 中。
kubelet 接收一组通过各类机制提供给它的 PodSpecs,确保这些 PodSpecs 中描述的容器处于运行状态且健康。 kubelet 不会管理不是由 Kubernetes 创建的容器。
kube-proxy
kube-proxy 是集群中每个节点上运行的网络代理, 实现 Kubernetes 服务(Service) 概念的一部分。
kube-proxy 维护节点上的网络规则。这些网络规则允许从集群内部或外部的网络会话与 Pod 进行网络通信。
如果操作系统提供了数据包过滤层并可用的话,kube-proxy 会通过它来实现网络规则。否则, kube-proxy 仅转发流量本身。
容器运行时(Container Runtime)
容器运行环境是负责运行容器的软件。
Kubernetes 支持多个容器运行环境: Docker、 containerd、CRI-O 以及任何实现 Kubernetes CRI (容器运行环境接口)。
插件(Addons)
插件使用 Kubernetes 资源(DaemonSet、 Deployment等)实现集群功能。 因为这些插件提供集群级别的功能,插件中命名空间域的资源属于 kube-system 命名空间。
下面描述众多插件中的几种。有关可用插件的完整列表,请参见 插件(Addons)。
DNS
尽管其他插件都并非严格意义上的必需组件,但几乎所有 Kubernetes 集群都应该 有集群 DNS, 因为很多示例都需要 DNS 服务。
集群 DNS 是一个 DNS 服务器,和环境中的其他 DNS 服务器一起工作,它为 Kubernetes 服务提供 DNS 记录。
Kubernetes 启动的容器自动将此 DNS 服务器包含在其 DNS 搜索列表中。
Web 界面(仪表盘)
Dashboard 是 Kubernetes 集群的通用的、基于 Web 的用户界面。 它使用户可以管理集群中运行的应用程序以及集群本身并进行故障排除。
容器资源监控
容器资源监控 将关于容器的一些常见的时间序列度量值保存到一个集中的数据库中,并提供用于浏览这些数据的界面。
集群层面日志
集群层面日志 机制负责将容器的日志数据 保存到一个集中的日志存储中,该存储能够提供搜索和浏览接口。
Kubernetes API
Kubernetes 控制面 的核心是 API 服务器。 API 服务器负责提供 HTTP API,以供用户、集群中的不同部分和集群外部组件相互通信。
Kubernetes API 使你可以查询和操纵 Kubernetes API 中对象(例如:Pod、Namespace、ConfigMap 和 Event)的状态。
大部分操作都可以通过 kubectl 命令行接口或 类似 kubeadm 这类命令行工具来执行, 这些工具在背后也是调用 API。不过,你也可以使用 REST 调用来访问这些 API。
如果你正在编写程序来访问 Kubernetes API,可以考虑使用 客户端库之一。
OpenAPI 规范
完整的 API 细节是用 OpenAPI 来表述的。
Kubernetes API 服务器通过 /openapi/v2 末端提供 OpenAPI 规范。 你可以按照下表所给的请求头部,指定响应的格式:
Kubernetes 为 API 实现了一种基于 Protobuf 的序列化格式,主要用于集群内部通信。 关于此格式的详细信息,可参考 Kubernetes Protobuf 序列化 设计提案。每种模式对应的接口描述语言(IDL)位于定义 API 对象的 Go 包中。
API 变更
任何成功的系统都要随着新的使用案例的出现和现有案例的变化来成长和变化。 为此,Kubernetes 的功能特性设计考虑了让 Kubernetes API 能够持续变更和成长的因素。 Kubernetes 项目的目标是 不要 引发现有客户端的兼容性问题,并在一定的时期内 维持这种兼容性,以便其他项目有机会作出适应性变更。
一般而言,新的 API 资源和新的资源字段可以被频繁地添加进来。 删除资源或者字段则要遵从 API 废弃策略。
关于什么是兼容性的变更、如何变更 API 等详细信息,可参考 API 变更。
API 组和版本
为了简化删除字段或者重构资源表示等工作,Kubernetes 支持多个 API 版本, 每一个版本都在不同 API 路径下,例如 /api/v1 或 /apis/rbac.authorization.k8s.io/v1alpha1。
版本化是在 API 级别而不是在资源或字段级别进行的,目的是为了确保 API 为系统资源和行为提供清晰、一致的视图,并能够控制对已废止的和/或实验性 API 的访问。
为了便于演化和扩展其 API,Kubernetes 实现了 可被启用或禁用的 API 组。
API 资源之间靠 API 组、资源类型、名字空间(对于名字空间作用域的资源而言)和 名字来相互区分。API 服务器可能通过多个 API 版本来向外提供相同的下层数据, 并透明地完成不同 API 版本之间的转换。所有这些不同的版本实际上都是同一资源 的(不同)表现形式。例如,假定同一资源有 v1 和 v1beta1 版本, 使用 v1beta1 创建的对象则可以使用 v1beta1 或者 v1 版本来读取、更改 或者删除。
关于 API 版本级别的详细定义,请参阅 API 版本参考。
API 扩展
有两种途径来扩展 Kubernetes API:
- 你可以使用自定义资源 来以声明式方式定义 API 服务器如何提供你所选择的资源 API。
- 你也可以选择实现自己的 聚合层 来扩展 Kubernetes API。
理解 Kubernetes 对象
Kubernetes 对象在 Kubernetes API 中是如何表示的,以及如何在 .yaml 格式的文件中表示。
在 Kubernetes 系统中,Kubernetes 对象 是持久化的实体。 Kubernetes 使用这些实体去表示整个集群的状态。特别地,它们描述了如下信息:
- 哪些容器化应用在运行(以及在哪些节点上)
- 可以被应用使用的资源
- 关于应用运行时表现的策略,比如重启策略、升级策略,以及容错策略
Kubernetes 对象是 “目标性记录” —— 一旦创建对象,Kubernetes 系统将持续工作以确保对象存在。 通过创建对象,本质上是在告知 Kubernetes 系统,所需要的集群工作负载看起来是什么样子的, 这就是 Kubernetes 集群的 期望状态(Desired State)。
操作 Kubernetes 对象 —— 无论是创建、修改,或者删除 —— 需要使用 Kubernetes API。 比如,当使用 kubectl 命令行接口时,CLI 会执行必要的 Kubernetes API 调用, 也可以在程序中使用 客户端库直接调用 Kubernetes API。
对象规约(Spec)与状态(Status)
几乎每个 Kubernetes 对象包含两个嵌套的对象字段,它们负责管理对象的配置: 对象 spec(规约) 和 对象 status(状态) 。 对于具有 spec 的对象,你必须在创建对象时设置其内容,描述你希望对象所具有的特征: 期望状态(Desired State) 。
status 描述了对象的 当前状态(Current State),它是由 Kubernetes 系统和组件 设置并更新的。在任何时刻,Kubernetes 控制平面 都一直积极地管理着对象的实际状态,以使之与期望状态相匹配。
例如,Kubernetes 中的 Deployment 对象能够表示运行在集群中的应用。 当创建 Deployment 时,可能需要设置 Deployment 的 spec,以指定该应用需要有 3 个副本运行。 Kubernetes 系统读取 Deployment 规约,并启动我们所期望的应用的 3 个实例 —— 更新状态以与规约相匹配。 如果这些实例中有的失败了(一种状态变更),Kubernetes 系统通过执行修正操作 来响应规约和状态间的不一致 —— 在这里意味着它会启动一个新的实例来替换。
关于对象 spec、status 和 metadata 的更多信息,可参阅 Kubernetes API 约定。
描述 Kubernetes 对象
创建 Kubernetes 对象时,必须提供对象的规约,用来描述该对象的期望状态, 以及关于对象的一些基本信息(例如名称)。 当使用 Kubernetes API 创建对象时(或者直接创建,或者基于kubectl), API 请求必须在请求体中包含 JSON 格式的信息。 大多数情况下,需要在 .yaml 文件中为 kubectl 提供这些信息。 kubectl 在发起 API 请求时,将这些信息转换成 JSON 格式。
这里有一个 .yaml 示例文件,展示了 Kubernetes Deployment 的必需字段和对象规约:
application/deployment.yaml
使用类似于上面的 .yaml 文件来创建 Deployment的一种方式是使用 kubectl 命令行接口(CLI)中的 kubectl apply 命令, 将 .yaml 文件作为参数。下面是一个示例:
kubectl apply -f https://k8s.io/examples/application/deployment.yaml --record
输出类似如下这样:
deployment.apps/nginx-deployment created
必需字段
在想要创建的 Kubernetes 对象对应的 .yaml 文件中,需要配置如下的字段:
- apiVersion - 创建该对象所使用的 Kubernetes API 的版本
- kind - 想要创建的对象的类别
- metadata - 帮助唯一性标识对象的一些数据,包括一个 name 字符串、UID 和可选的 namespace
- spec - 你所期望的该对象的状态
对象 spec 的精确格式对每个 Kubernetes 对象来说是不同的,包含了特定于该对象的嵌套字段。 Kubernetes API 参考 能够帮助我们找到任何我们想创建的对象的规约格式。
例如,Pod 参考文档详细说明了 API 中 Pod 的 spec 字段, Deployment 的参考文档则详细说明了 Deployment 的 spec 字段。 在这些 API 参考页面中,你将看到提到的 PodSpec 和 DeploymentSpec。 这些名字是 Kubernetes 用来实现其 API 的 Golang 代码的实现细节。
如何为 Kubernetes 作业设置时间限制?
【中文标题】如何为 Kubernetes 作业设置时间限制?【英文标题】:How to set a time limit for a Kubernetes job? 【发布时间】:2017-12-10 20:48:36 【问题描述】:我想启动一个 Kubernetes 作业并给它一个固定的完成期限。如果截止日期到来时 pod 仍在运行,我希望自动终止该作业。
这样的东西存在吗? (起初我认为 Job 规范的 activeDeadlineSeconds
涵盖了这个用例,但现在我看到 activeDeadlineSeconds
只对重新尝试工作的时间设置了限制;它不会主动杀死缓慢/失控的工作。 )
【问题讨论】:
利用活性探针怎么样?您可以创建一个探测器,在您需要的时间内返回成功,并且在达到最后期限后,它将返回失败(1)并杀死容器。更多关于活性探针的信息:kubernetes.io/docs/tasks/configure-pod-container/… 我认为这实际上是一个非常好的功能请求。它是否在 Kubernetes Github 中被跟踪? 【参考方案1】:您可以使用 GNU timeout
实用程序在容器的入口点命令上自行设置超时。
例如,以下计算 pi 前 4000 位数字的作业将在 10 秒后超时:
apiVersion: batch/v1
kind: Job
metadata:
name: pi
spec:
template:
metadata:
name: pi
spec:
containers:
- name: pi
image: perl
command: ["/usr/bin/timeout", "10", "perl", "-Mbignum=bpi", "-wle", "print bpi(4000)"]
restartPolicy: Never
(清单采用自https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/#running-an-example-job)
您可以玩这些数字,看看它是否超时。通常在我的工作站上计算 4000 位 pi 需要大约 23 秒,所以如果你将它设置为 5 秒,它可能总是会失败,如果你将它设置为 120 秒,它总是会工作。
【讨论】:
谢谢!我非常喜欢这个,尽管它强制 pod 模板了解图像的默认命令,而不仅仅是 running 图像。这有点不幸,但绝对是一个可行的解决方案。 仅供参考,您始终可以为参数创建变量,例如$TIMEOUT
,其值来自 ConfigMap 挂载,因此您不必硬编码。这样您就可以在 ConfigMap 中对其进行修改,新作业将使用新值。
这很好——尽管规范仍然需要知道图像的默认命令。
使用timeout
cli 是一种很好的处理方式,我完全过度设计了它(blog.random.io/k8s-cronjob-with-execution-timeout)
我通常将 yaml 的 command:
部分以 bash -c
结尾,然后将您关心的命令放在 args:
部分。这样command
永远不会改变,并且在args
中编写自然命令行更容易,因为它不需要任何尴尬的引用。【参考方案2】:
根据我对activeDeadlineSeconds
部分文档的理解,它指的是作业的活动时间,在此时间之后,作业被视为Failed
。
官方文档声明:
activeDeadlineSeconds 适用于作业的持续时间,无论创建了多少 Pod。一旦 Job 达到 activeDeadlineSeconds,所有正在运行的 Pod 都将被终止,并且 Job 状态将变为 type: Failed with reason: DeadlineExceeded
https://kubernetes.io/docs/concepts/workloads/controllers/job/#job-termination-and-cleanup
【讨论】:
以上是关于[K8s]何为Kubernetes?的主要内容,如果未能解决你的问题,请参考以下文章
如何为 kops 在 AWS 上安装的 k8s 做集群自动扩缩器?
KUBERNETES03_k8s对象是什么如何管理命名空间代码自动补全提示
KUBERNETES03_k8s对象是什么如何管理命名空间代码自动补全提示