数据结构~基础2~树《二叉树二叉搜索树AVL树B树红黑树》的设计~高度平衡二叉树AVL树

Posted 一乐乐

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据结构~基础2~树《二叉树二叉搜索树AVL树B树红黑树》的设计~高度平衡二叉树AVL树相关的知识,希望对你有一定的参考价值。

 数据结构~基础2~树【《二叉树、二叉搜索树、AVL树、B树、红黑树》的设计】~高度平衡二叉树AVL树

 

一、 高度平衡二叉树【AVL树】:

 

 

AVL树的通用接口:二叉搜索树的通用接口 + 增加之后、删掉之后更新高度

恢复平衡、旋转【左旋、右旋】(更新父结点关系)

 

增加之后:从当前结点的父结点开始,不断地判断父结点是否平衡,平衡则更新高度,否则则找到第一个失衡的父结点恢复平衡即可。

更新高度:AVL树结点的内定义了一个更新高度的接口方法:

AVL 树是 从底部向顶部更新高度(底部叶子结点高度是1),每次往上都是取高度更高的子树的高度+1

□ 恢复平衡【不平衡关系(g-p-n)中 p、n处在与 高度最高的那边,与g同边】:接下来就需要判断是哪一种形态的失衡【LL】【RR】【LR-RR】【RL-LL】

//① 已知g【失衡结点】 情况下,往下调整,先判断p,再判断n,从而得知是【LL】【RR】【LR】【RL】

//② 然后依据相应类型进行旋转。

 

● 恢复平衡的代码:

// 恢复平衡【不平衡关系(g-p-n)中 p、n处在与 高度最高的那边,与g同边】
    private void reBalance(Node<E> grand) {
        Node<E> parent = ((AVLNode<E>) grand).tallerChild(); // p
        Node<E> node = ((AVLNode<E>) parent).tallerChild(); // n
        // 接下来就需要判断是哪一种形态的失衡【LL】【RR】【LR-RR】【RL-LL】
        //已知g【失衡结点】 情况下,往下调整,先判断p,再判断n,从而得知是【LL】【RR】【LR】【RL】
        if (parent.isLeftChild()) { // 一开始p是L
            if (node.isLeftChild()) { // LL
                // //封装成一个方法,右旋接口方法 // //
                rotateRight(grand);
    
            } else { // LR
                rotateLeft(parent);
                rotateRight(grand);
            }
        } else { // 一开始 p是R
            if (node.isLeftChild()) { // RL
                rotateRight(parent);
                rotateLeft(grand);
            } else { // RR
                rotateLeft(grand);
            }
        }
    }

 

● 旋转【左旋、右旋】的代码:

// 左旋转(RR,右边过重),
    private void rotateLeft(Node<E> grand) {
        //左旋,则p必然是g的右孩子
        Node<E> parent = grand.right;
        Node<E> child = parent.left;
        //RR,右边过重,左旋
        grand.right = child;
        parent.left = grand;
        // 旋转之后更新
        afterRotate(grand, parent, child);
    }

    // 右旋转(LL,左边过重)
    private void rotateRight(Node<E> grand) {
        //右旋,p必然是g的左孩子
        Node<E> parent = grand.left;
        Node<E> child = parent.right;
        // LL,左边过重,右旋
        grand.left = child;
        parent.right = grand;
        // 旋转之后更新
        afterRotate(grand, parent, child);
    }

 

● 旋转之后【结点关系】和【父结点高度】的更新代码:

//旋转之后父节点关系的更新【首先先更新 p、然后是child、 grand】与父结点高度的更新
    private void afterRotate(Node<E> grand, Node<E> parent, Node<E> child) {
        parent.parent = grand.parent;
        if (grand.isLeftChild()) {
            grand.parent.left = parent;
        } else if (grand.isRightChild()) {
            grand.parent.right = parent;
        } else {
            root = parent;
        }
        // 更新child的父结点
        if (child != null) {
            child.parent = grand;
        }
        // 更新grand的父节点
        grand.parent = parent;
        // 更新作为父结点的高度[从低到高,先更新 g、再更新 p]
        updateHeight(grand);
        updateHeight(parent);
    }

 

■ 删除之后:与增加之后同理【只是增加之后仅需修复第一个失衡的父结点,而删除之后是不断地修改失衡父结点】

 

 

数据结构之二叉搜索树AVL自平衡树

前言

最近在帮公司校招~~ 所以来整理一些数据结构方面的知识,这些知识呢,光看一遍理解还是很浅的,看过跟动手做过一遍的同学还是很容易分辨的哟~

一直觉得数据结构跟算法,就好比金庸小说里的《九阳神功》,学会九阳神功后,有了内功基础,再去学习其他武功,速度就有质的提升

内容大概包含这些,会分多篇文章来整理:

  1. 二叉搜索树
  2. 平衡二叉树(AVL)
  3. 二叉堆
  4. 堆排序
  5. 四叉树
  6. 八叉树
  7. 图,深度优先DFS、广度优先BFS
  8. 最短路径

二叉树

二叉树,也就是每个节点最多有两个孩子的树。多用于搜索,查找,还有可以用来求最短编码的哈弗曼树,也称为最优二叉树。

二叉排序/搜索树

如图,树的每个有孩子的节点都满足:左节点的值<根节点的值<右节点的值条件的树,称为二叉排序树,也叫二叉搜索树。
技术图片

如果对这个树进行中序遍历,就能得到一个排序的数列,非常简单,下面贴出插入操作跟遍历的代码
插入操作

        public void Add(BinaryTree node)
        {
            if (node.Value < Value)
            {
                if (this.Left != null)
                {
                    this.Left.Add(node);
                }
                else
                {
                    this.Left = node;
                }
            }
            else
            {
                if (this.Right != null)
                {
                    this.Right.Add(node);
                }
                else
                {
                    this.Right = node;
                }
            }
        }

中序遍历输出排序列表

        public void InOrder(List<int> list)
        {
            if (Left != null)
            {
                Left.InOrder(list);
            }
            
            list.Add(this.Value);
            
            if (Right != null)
            {
                Right.InOrder(list);
            }
        }

但是二叉排序树极端的情况,效率会变成链表线性结构,这样查找起来时间复杂度会变成O(n),就失去了树形结构的意义,如图:
技术图片

这时就要引出我们的另外一种二叉树树结构了

平衡二叉树

平衡二叉树(AVL)简单来说就是插入的时候,要保证子节点的平衡,别老往一边一直插入下去,那样又成了链表效率了

首先来搞懂这个几个定义
平衡因子:即左子树的高度减去右子树的高度
平衡二叉树上所有节点的平衡因子都必须为:-1、0和1。否则该二叉树就不是平衡二叉树
如下图,图左边是一颗平衡二叉树,图右根节点平衡因子为-2,则不是平衡二叉树
技术图片

如何保持树的平衡
每当插入一个节点的时候,都检查这次插入是否会破坏平衡性,若是,则找出最小不平衡子树,在保持二叉排序树的前提下,进行相应旋转,使之成为新的平衡子树。
通常会有四种旋转情况:

单向右旋平衡处理

也有地方称为Left Left旋转,是不是觉得很奇怪,一下左,一下右边的,它估计是想把你转晕,好套出你的花呗密码。

那么到底是什么意思呢,请看下图
技术图片
这棵树有三个节点:6,4,2

我们把节点2当成是最新插入进来的节点,由于这个节点2的插入,导致节点6的平衡因子变成了2,不符合-1、0、1的规定,破坏了平衡性,所以我们需要对节点6进行右旋转,而节点2又是节点6的Left节点的Left节点,所以也称为LL旋转。

右旋操作

也就是如果结点6的左孩子节点4有右孩子,则将节点4的右孩子变成节点6的左孩子,最后将节点6变成节点4的右孩子

单向左旋平衡处理
左旋平衡处理也叫RR旋转,是LL的镜像操作
技术图片

双向旋转(先右后左)平衡处理 (Right Left)
为什么会有这种情况出现呢,因为我们的平衡树,首先也是一颗二叉排序树,必须满足左节点<根节点<右节点的插入规则。

所以如下图,节点4插入导致树失去平衡,单向旋转已经不能满足要求了,需要先让节点6右旋,然后再把节点2左旋
技术图片

双向旋转(先左后右)平衡处理 (Left Right)
同理,是RL的镜像操作
技术图片

代码实现

        //右旋转
        public BinaryTree RightRotate(BinaryTree root)
        {
            BinaryTree lchild = root.Left;
            root.Left = lchild.Right;
            lchild.Right = root;
            return lchild;
        }

        //左旋转
        public BinaryTree LeftRotate(BinaryTree root)
        {
            BinaryTree rchild = root.Right;
            root.Right = rchild.Left;
            rchild.Left = root;
            return rchild;
        }

        //先左后右旋转
        public BinaryTree LeftRightRotate(BinaryTree root)
        {
            root.Left = root.Left.LeftRotate(root);
            return RightRotate(root);
        }

        //先右后左旋转
        public BinaryTree RightLeftRotate(BinaryTree root)
        {
            root.Right = root.Right.RightRotate(root);
            return LeftRotate(root);
        }
        
        //计算平衡因子,取绝对值
        public int Balance(BinaryTree root)
        {
            int val = 0;
            if (root.Left != null) val += Height(root.Left);
            if (root.Right != null) val -= Height(root.Right);
            return Math.Abs(val);
        }

        //计算树的高度
        public int Height(BinaryTree root)
        {
            int leftHeight = 0;
            int rightHeight = 0;
            if (root != null && root.Left != null)
            {
                leftHeight += Height(root.Left);
            }
            if (root != null && root.Right != null)
            {
                rightHeight += Height(root.Right);
            }
            return rightHeight > leftHeight ? ++rightHeight : ++leftHeight;
        }

插入操作

        public BinaryTree Inster(BinaryTree root, int key)
        {
            if (root == null)
            {
                root = new BinaryTree(key);
            }
            else if (key < root.Value)//插入到左边
            {
                root.Left = Inster(root.Left, key);

                if (Balance(root) > 1)//插入左节点导致树失衡了
                {
                    if (key < root.Left.Value)//LL处理,右旋
                    {
                        root = RightRotate(root);
                    }
                    else
                    {
                        root = LeftRightRotate(root);//LR处理,先左后右
                    }
                }
            }
            else
            {
                root.Right = Inster(root.Right, key);

                if (Balance(root) > 1)//插入右节点导致失衡
                {
                    if (key > root.Right.Value)//RR处理, 左旋
                    {
                        root = LeftRotate(root);
                    }
                    else
                    {
                        root = RightLeftRotate(root);//RL处理,先右后左
                    }
                }
            }
            return root;
        }

使用平衡二叉树后,查询起来时间复杂度就从O(n)变为了O( log n)。

总结

平衡二叉树的优点在于因为树结构维护的较好,所以搜索查询速度很快,但在插入,删除的时候,为了保持树的平衡会做一次或多次旋转。
适合用于插入删除操作少,而搜索操作很多的情况。

为了减少插入,删除在旋转方面的消耗,另一种自平衡树结构出现了

它就是:红黑树
红黑树不追求"完全平衡",即不像AVL那样要求节点的 |平衡因子| <= 1,它只要求部分达到平衡,但是提出了为节点增加颜色,红黑是用非严格的平衡来换取增删节点时候旋转次数的降低,任何不平衡都会在三次旋转之内解决,而AVL是严格平衡树,因此在增加或者删除节点的时候,根据不同情况,旋转的次数比红黑树要多。

学会了AVL在去看红黑树也就很简单了~~

参考

https://www.cnblogs.com/sench/p/7786718.html
https://baijiahao.baidu.com/s?id=1577200621749785094&wfr=spider&for=pc

以上是关于数据结构~基础2~树《二叉树二叉搜索树AVL树B树红黑树》的设计~高度平衡二叉树AVL树的主要内容,如果未能解决你的问题,请参考以下文章

[数据结构]二叉搜索树(BST) VS 平衡二叉排序树(AVL) VS B树(平衡多路搜索树) VS B+树 VS 红黑树(平衡二叉B树)

数据结构之二叉搜索树AVL自平衡树

数据结构与算法系列研究五——树二叉树三叉树平衡排序二叉树AVL

二叉搜索树的理解以及AVL树的模拟实现

二叉搜索树的理解以及AVL树的模拟实现

解密树的平衡:二分搜索树 → AVL自平衡树 → 红黑树