TCP三次握手四次挥手,通俗易懂版

Posted 一行代码改变世界

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了TCP三次握手四次挥手,通俗易懂版相关的知识,希望对你有一定的参考价值。

三次握手四次挥手

三次握手

其实很好理解,三次握手就是保证双手都有发送和接受的能力。那么最少三次才能验证完成            
 即----》 客户端发送---服务端收到----服务端发送--

    1.客户端发送 ----- 服务端收到    验证客户端发送功能
    2.服务端发送 ----- 客户端接收    验证服务端接收和发送能力
    3.客户端接收 ----- 客户端再次发送 验证客户端接受能力
三次之后,双方都知道对方具有 **发送** 和 **接收** 的能力  建立连接

这里可能大家会有个疑惑:为什么 TCP 建立连接需要三次握手,而不是两次?这是因为这是为了防止出现失效的连接请求报文段被服务端接收的情况,从而产生错误。

四次挥手

1)客户端进程发出连接释放报文,并且停止发送数据。释放数据报文首部,FIN=1,其序列号为seq=u(等于前面已经传送过来的数据的最后一个字节的序号加1),
   此时,客户端进入FIN-WAIT-1(终止等待1)状态。 TCP规定,FIN报文段即使不携带数据,也要消耗一个序号。

2)服务器收到连接释放报文,发出确认报文,ACK=1,ack=u+1,并且带上自己的序列号seq=v,此时,服务端就进入了CLOSE-WAIT(关闭等待)状态。
   TCP服务器通知高层的应用进程,客户端向服务器的方向就释放了,这时候处于半关闭状态,即客户端已经没有数据要发送了,
   但是服务器若发送数据,客户端依然要接受。这个状态还要持续一段时间,也就是整个CLOSE-WAIT状态持续的时间。

3)客户端收到服务器的确认请求后,此时,客户端就进入FIN-WAIT-2(终止等待2)状态,等待服务器发送连接释放报文(在这之前还需要接受服务器发送的最后的数据)。

4)服务器将最后的数据发送完毕后,就向客户端发送连接释放报文,FIN=1,ack=u+1,
   由于在半关闭状态,服务器很可能又发送了一些数据,假定此时的序列号为seq=w,此时,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。

5)客户端收到服务器的连接释放报文后,必须发出确认,ACK=1,ack=w+1,而自己的序列号是seq=u+1,此时,客户端就进入了TIME-WAIT(时间等待)状态。
   注意此时TCP连接还没有释放,必须经过2∗∗MSL(最长报文段寿命)的时间后,当客户端撤销相应的TCB后,才进入CLOSED状态。

6)服务器只要收到了客户端发出的确认,立即进入CLOSED状态。同样,撤销TCB后,就结束了这次的TCP连接。可以看到,服务器结束TCP连接的时间要比客户端早一些。

常见面试题

【问题1】为什么连接的时候是三次握手,关闭的时候却是四次握手?

答:因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。
    但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,"你发的FIN报文我收到了"。
    只有等到我Server端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四步握手。

【问题2】为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?

答:虽然按道理,四个报文都发送完毕,我们可以直接进入CLOSE状态了,但是我们必须假想网络是不可靠的,有可以最后一个ACK丢失。
    所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。在Client发送出最后的ACK回复,但该ACK可能丢失。Server如果没有收到ACK,将不断重复发送FIN片段。
    所以Client不能立即关闭,它必须确认Server接收到了该ACK。Client会在发送出ACK之后进入到TIME_WAIT状态。Client会设置一个计时器,等待2MSL的时间。
    如果在该时间内再次收到FIN,那么Client会重发ACK并再次等待2MSL。所谓的2MSL是两倍的MSL(Maximum Segment Lifetime)。
    MSL指一个片段在网络中最大的存活时间,2MSL就是一个发送和一个回复所需的最大时间。如果直到2MSL,Client都没有再次收到FIN,那么Client推断ACK已经被成功接收,则结束TCP连接。

【问题3】为什么不能用两次握手进行连接?

答:3次握手完成两个重要的功能,既要双方做好发送数据的准备工作(双方都知道彼此已准备好),也要允许双方就初始序列号进行协商,这个序列号在握手过程中被发送和确认。

       现在把三次握手改成仅需要两次握手,死锁是可能发生的。
       作为例子,考虑计算机S和C之间的通信,假定C给S发送一个连接请求分组,S收到了这个分组,并发 送了确认应答分组。按照两次握手的协定,S认为连接已经成功地建立了,可以开始发送数据分组。
       可是,C在S的应答分组在传输中被丢失的情况下,将不知道S 是否已准备好,不知道S建立什么样的序列号,C甚至怀疑S是否收到自己的连接请求分组。
       在这种情况下,C认为连接还未建立成功,将忽略S发来的任何数据分 组,只等待连接确认应答分组。而S在发出的分组超时后,重复发送同样的分组。这样就形成了死锁。

【问题4】如果已经建立了连接,但是客户端突然出现故障了怎么办?

       TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。
       服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75秒钟发送一次。
       若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。

本文来自博客园,作者:{Zedffeng},转载请注明原文链接:{https://www.cnblogs.com/zedffeng/}

TCP‘三次握手’和‘四次挥手’(通俗易懂)

 

概述

我们都知道 TCP 是 可靠的数据传输协议,UDP是不可靠传输,那么TCP它是怎么保证可靠传输的呢?那我们就不得不提 TCP 的三次握手和四次挥手。

三次握手

下图为三次握手的流程图

 

技术图片

下面通过我们 wireshark 抓包工具来分析三次握手

 

技术图片

三次握手数据包

第一次握手

建立连接。客户端发送连接请求报文段,将SYN位置为1,Sequence Number为x;(x 是随机生成的一个 int 数值)然后,客户端进入SYN_SEND状态,等待服务器的确认;

 

技术图片

第二次握手

服务器收到SYN报文段。服务器收到客户端的SYN报文段,需要对这个SYN报文段进行确认,设置Acknowledgment Number为x+1(Sequence Number+1);同时,自己自己还要发送SYN请求信息,将SYN位置为1,Sequence Number为 y (y 是随机生存的一个 int 数值);服务器端将上述所有信息放到一个报文段(即SYN+ACK报文段)中,一并发送给客户端,此时服务器进入SYN_RECV状态;

 

技术图片

第三次握手

客户端收到服务器的SYN+ACK报文段。然后将Acknowledgment Number设置为y+1,向服务器发送ACK报文段,这个报文段发送完毕以后,客户端和服务器端都进入ESTABLISHED状态,完成TCP三次握手。

 

技术图片

四次挥手

技术图片

第一次挥手:

Client (可以使客户端,也可以是服务器端),设置Sequence Number和Acknowledgment Number,向 Server发送一个FIN报文段;此时,Client 进入FIN_WAIT_1状态;这表示 Client 没有数据要发送给 Server了;

客户端发送第一次挥手后,就不能在向 服务端发送数据了。

第二次挥手:

Server 收到了 Client 发送的FIN报文段,向 Client 回一个ACK报文段,Acknowledgment Number 为 Sequence Number 加 1;Client 进入 FIN_WAIT_2 状态;Server 告诉 Client ,我“同意”你的关闭请求;

Server 第一次响应后,还可以继续向 Client 发送数据,这里只是告诉 Client ,我收到你发送的关闭请求。

第三次挥手

Server 向 Client 发送 FIN 报文段,请求关闭连接,同时 Server 进入 CLOSE_WAIT 状态;

当 Server 的数据响应完成后,再告诉 Client,我这边也可以关闭请求了, 这时
Server 就不能再向 Client 发送数据了

第四次挥手

Client 收到 Server 发送的 FIN 报文段,向 Server 发送 ACK 报文段,然后 Client 进入
TIME_WAIT 状态;Server 收到 Client 的 ACK 报文段以后,就关闭连接;此时,Client
等待2MSL后依然没有收到回复,则证明 Server 端已正常关闭,那好,Client 也可以关闭连接了。

什么是MSL

MSL是Maximum Segment Lifetime英文的缩写,中文可以译为“报文最大生存时间”,他是任何报文在网络上存在的最长时间,超过这个时间报文将被丢弃。因为tcp报文(segment)是ip数据报(datagram)的数据部分,具体称谓请参见《数据在网络各层中的称呼》一文,而ip头中有一个TTL域,TTL是time to live的缩写,中文可以译为“生存时间”,这个生存时间是由源主机设置初始值但不是存的具体时间,而是存储了一个ip数据报可以经过的最大路由数,每经过一个处理他的路由器此值就减1,当此值为0则数据报将被丢弃,同时发送ICMP报文通知源主机。RFC 793中规定MSL为2分钟,实际应用中常用的是30秒,1分钟和2分钟等。

2MSL即两倍的MSL,TCP的TIME_WAIT状态也称为2MSL等待状态,当TCP的一端发起主动关闭,在发出最后一个ACK包后,即第3次握手完成后发送了第四次握手的ACK包后就进入了TIME_WAIT状态,必须在此状态上停留两倍的MSL时间,等待2MSL时间主要目的是怕最后一个ACK包对方没收到,那么对方在超时后将重发第三次握手的FIN包,主动关闭端接到重发的FIN包后可以再发一个ACK应答包。在TIME_WAIT状态时两端的端口不能使用,要等到2MSL时间结束才可继续使用。当连接处于2MSL等待阶段时任何迟到的报文段都将被丢弃。不过在实际应用中可以通过设置SO_REUSEADDR选项达到不必等待2MSL时间结束再使用此端口。

TTL与MSL是有关系的但不是简单的相等的关系,MSL要大于等于TTL。

为什么要三次握手?

为什么要三次握手

TCP 建立连接,其实通过两次握手就可以建立连接了,为什么要三次呢?是不是多此一举呢?

1、《计算机网络》中是这样说的:

为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误。
在书中同时举了一个例子,如下:
已失效的连接请求报文段”的产生在这样一种情况下:client发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误到连接释放以后的某个时间才到达server。本来这是一个早已失效的报文段。但server收到此失效的连接请求报文段后,就误认为是client再次发出的一个新的连接请求。于是就向client发出确认报文段,同意建立连接。假设不采用“三次握手”,那么只要server发出确认,新的连接就建立了。由于现在client并没有发出建立连接的请求,因此不会理睬server的确认,也不会向server发送数据。但server却以为新的运输连接已经建立,并一直等待client发来数据。这样,server的很多资源就白白浪费掉了。采用“三次握手”的办法可以防止上述现象发生。例如刚才那种情况,client不会向server的确认发出确认。server由于收不到确认,就知道client并没有要求建立连接。”

2、网络故障

比如,现在网络出现了故障,只能发请求数据包,而接收不到响应数据包,那么只要发送一次请求,服务器就建立请求,这样肯定也是不对的,网络请求有来有回才能完成通讯。所以三次握手是必不可少的。

为什么要四次挥手呢

TCP协议是一种面向连接的、可靠的、基于字节流的运输层通信协议。TCP是全双工模式,这就意味着,当 Client 发出FIN报文段时,只是表示 Client 已经没有数据要发送了,Client 告诉 Server,它的数据已经全部发送完毕了;但是,这个时候 Client 还是可以接受来自 Server 的数据;当 Server 返回ACK报文段时,表示它已经知道 Client 没有数据发送了,但是 Server 还是可以发送数据到 Client 的;当 Server 也发送了FIN报文段时,这个时候就表示 Server 也没有数据要发送了,就会告诉 Client ,我也没有数据要发送了,之后彼此就会愉快的中断这次TCP连接。如果要正确的理解四次分手的原理,就需要了解四次分手过程中的状态变化。

 

以上是关于TCP三次握手四次挥手,通俗易懂版的主要内容,如果未能解决你的问题,请参考以下文章

TCP的三次握手和四次挥手精简易懂版

揭秘——TCP的三次握手和四次挥手

TCP三次握手四次挥手最通俗理解

TCP三次握手和四次挥手通俗理解

TCP协议三次握手与四次挥手通俗解析

简单易懂TCP的三次握手与四次挥手