clickhouse 在order by非常慢的情况下优化(引擎+分段sql)
Posted 寒江孤影,江湖过客,相逢何必曾相识
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了clickhouse 在order by非常慢的情况下优化(引擎+分段sql)相关的知识,希望对你有一定的参考价值。
1、展示一下order by 在上亿级别数据量有多慢
对于clickhouse来说,当表的基础大到亿级别, 如果做查询后,在做order by 速递是非常慢的;
比如我有一张表有3亿条数据,表结构是:
{
dvid 设备ID ,
json 每个设备的信息 ,
dt 时间 ,
filter 过滤条件 ,
order_key 排序条件
}
ENGINE = MergeTree
PARTITION BY toYYYYMMDD(toDate(dt))
PRIMARY KEY (dt, dvid)
ORDER BY (dt, dvid)
SETTINGS index_granularity = 256
现在要统计3个月(1.5亿条)的设备数量,并按照order_key做排序
给出的sql:
select count(1) from
(select dt, toUInt32(dvid) as dvid , json from 表 where filter条件 order by order_key排序条件)
很简单的sql,但是查询速度很慢:
+---------+
| count() |
+---------+
| 1262100 |
+---------+
1 row in set (37.50 sec)
但是当你把order by去掉后,同样是数据量查询速度会非常快:
+---------+
| count() |
+---------+
| 1262100 |
+---------+
1 row in set (1.74 sec)
2、查看执行计划,看看为什么这么慢
2.1、先看没有order by的执行计划:
+-------------------------------------------------------------------------------------------------+ | explain | +-------------------------------------------------------------------------------------------------+ | Expression ((Projection + Before ORDER BY)) | | Aggregating | | Expression ((Before GROUP BY + Projection)) | | SettingQuotaAndLimits (Set limits and quota after reading from storage) | | Union | | Expression ((Convert block structure for query from local replica + Before ORDER BY)) | | SettingQuotaAndLimits (Set limits and quota after reading from storage) | | ReadFromStorage (MergeTree) | | ReadFromPreparedSource (Read from remote replica) | +-------------------------------------------------------------------------------------------------+ 9 rows in set (0.05 sec)
大概意思是:
第一步:从每个机器的硬盘上把数据读取出来
第二步:union一下每个机器读取的数据
第三步:求count
没有order by的总耗时:1.7s
2.2、进行order by的执行计划
+-------------------------------------------------------------------------------------------+ | explain | +-------------------------------------------------------------------------------------------+ | Expression ((Projection + Before ORDER BY)) | | Aggregating | | Expression ((Before GROUP BY + Projection)) | | MergingSorted (Merge sorted streams for ORDER BY) | | SettingQuotaAndLimits (Set limits and quota after reading from storage) | | Union | | Expression (Convert block structure for query from local replica) | | FinishSorting | | Expression (Before ORDER BY) | | SettingQuotaAndLimits (Set limits and quota after reading from storage) | | Expression (Remove unused columns after reading from storage) | | Union | | MergingSorted (Merge sorting mark ranges) | | Expression (Calculate sorting key prefix) | | ReadFromStorage (MergeTree with order) | | MergingSorted (Merge sorting mark ranges) | | Expression (Calculate sorting key prefix) | | ReadFromStorage (MergeTree with order) | | MergingSorted (Merge sorting mark ranges) | | Expression (Calculate sorting key prefix) | | ReadFromStorage (MergeTree with order)
...................
省略一摸一样的N行
...................
大概意思:
1、从硬盘读取需要的数据(部分,因为order by需要在内存里面快速排序,无法读取全部)
2、按照order by 的key进行排序
3、N多个order by排序完的数据,在做最终汇总,然后对汇总后的数据在做排序(这一步也会根据数据量分成多步完成)
4、最终做聚合求count
最终order by的总耗时:37.5s
3、优化
3.1、切换引擎
上一步慢、猜测可能是clickhouse的mergeTree引擎并不适合做排序操作,于是尝试了各种引擎,最终得到最适合order by的引擎:ReplicatedAggregatingMergeTree
重建建表:
ENGINE = ReplicatedAggregatingMergeTree(\'/clickhouse/tables/{shard}/库/表\', \'{replica}\') PARTITION BY toYYYYMMDD(toDate(dt)) PRIMARY KEY dvid ORDER BY dvid SETTINGS index_granularity = 8196
然后增加表的数据量,将原来的1.5亿条 增加到3.5亿条
执行同样的语句,测试性能:
1、不带order by
+---------+ | count() | +---------+ | 3290193 | +---------+ 1 row in set (3.58 sec)
2、带order by的查询速度
+---------+ | count() | +---------+ | 3290193 | +---------+ 1 row in set (4.16 sec)
3.2、查看切换ReplicatedAggregatingMergeTree引擎后的执行计划
1、不带order by的执行计划
+-------------------------------------------------------------------------------------------------+ | explain | +-------------------------------------------------------------------------------------------------+ | Expression ((Projection + Before ORDER BY)) | | Aggregating | | Expression ((Before GROUP BY + Projection)) | | SettingQuotaAndLimits (Set limits and quota after reading from storage) | | Union | | Expression ((Convert block structure for query from local replica + Before ORDER BY)) | | SettingQuotaAndLimits (Set limits and quota after reading from storage) | | ReadFromStorage (MergeTree) | | ReadFromPreparedSource (Read from remote replica) | +-------------------------------------------------------------------------------------------------+ 9 rows in set (0.05 sec)
不带order by的执行计划MergeTree的引擎一样,所以没任何改变,之所以查询速度从1.74s变到3.58s 是因为基础数据从原来的1.5亿变成现在的3.3亿
2、带order by的执行计划
+-----------------------------------------------------------------------------------------------+ | explain | +-----------------------------------------------------------------------------------------------+ | Expression ((Projection + Before ORDER BY)) | | Aggregating | | Expression ((Before GROUP BY + Projection)) | | MergingSorted (Merge sorted streams for ORDER BY) | | SettingQuotaAndLimits (Set limits and quota after reading from storage) | | Union | | Expression (Convert block structure for query from local replica) | | MergingSorted (Merge sorted streams for ORDER BY) | | MergeSorting (Merge sorted blocks for ORDER BY) | | PartialSorting (Sort each block for ORDER BY) | | Expression (Before ORDER BY) | | SettingQuotaAndLimits (Set limits and quota after reading from storage) | | ReadFromStorage (MergeTree) | | ReadFromPreparedSource (Read from remote replica) | +-----------------------------------------------------------------------------------------------+ 14 rows in set (0.08 sec)
对比MergeTree引擎的order by执行计划,ReplicatedAggregatingMergeTree的要简化很多
优化点显而易见:分机器/分区/分段的读取数据做排序,在汇总 , 并且是按照block进行排序的
1、对每台机器,按照一定范围进行PartialSorting(不按照具体数据排序,而是按照block快排序)
2、对第一步排序好的block进行汇总排序(因为已经知道第一步block的顺序了,所以汇总的时候直接对比最大block和最小block就可以了)
3、本地的排序好了,在做分布式的排序进行最终的汇总排序
4、求count
上面的操作很像归并排序,适应大数据量分布式排序
4、对sql做优化
【做完上一步其实已经慢满足需求了,但我们的需求并不是单纯为了求数量,而是拿到自定义时间段的某个第一个出现的东西】
切换引擎后,查询速度有了本质的提升,接下来在对sql做优化。假如原来的sql是查询3个月的数据量,那么还可以进行分段查,比如每15天/一个月 做一次order by
原来的sql:
select count(1) from (select dt, toUInt32(dvid) as dvid , json from 表 where filter条件 and dt >= \'2021-01-01\' <= \'2021-03-31\' order by order_key排序条件)
优化后的sql:
select count(1) from ( select dt,toUInt32(dvid) as dvid ,json from 表 where filter条件 and dt>=\'2021-01-01\' and dt <= \'2021-01-31\' order by order_key排序条件 union all select dt,toUInt32(dvid) as dvid ,json from 表 where filter条件 and dt>=\'2021-02-01\' and dt <= \'2021-02-31\' order by order_key排序条件 union all select dt,toUInt32(dvid) as dvid ,json from 表 where filter条件 and dt>=\'2021-03-01\' and dt <= \'2021-03-31\' order by order_key排序条件 )
查询速度:
+---------+
| count() |
+---------+
| 3290193 |
+---------+
1 row in set (2.74 sec)
经过优化引擎+优化sql:最终的查询速度由原来的37.5s 优化2.74s
以上是关于clickhouse 在order by非常慢的情况下优化(引擎+分段sql)的主要内容,如果未能解决你的问题,请参考以下文章
clickhouse实践clickhouse中如何实现ROW_NUMBER() OVER(PARTITION BY ‘xxx‘ ORDER BY ‘xxx‘ DESC/ASC)
clickhouse实践clickhouse中如何实现ROW_NUMBER() OVER(PARTITION BY ‘xxx‘ ORDER BY ‘xxx‘ DESC/ASC)
ClickHouse MergeTree 使用 ORDER BY 进行慢速选择