Codeforces Round #738 (Div. 2) 题解

Posted 人形自走Bug生成器

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Codeforces Round #738 (Div. 2) 题解相关的知识,希望对你有一定的参考价值。

旅行传送门

A. Mocha and Math

题意:给你一个序列,你可以任意次地进行如下操作:

选择一个任意的区间 \\([l,r]\\) ,对于区间内的所有值,用 \\(a_{l+i}\\) & \\(a_{r−i}\\) 替换 \\(a_{l+i}\\)

求序列最小化后的最大值。

题目分析:我们不妨考虑&的性质,两个数相与,只有在它们的二进制表示中该位均为1时,该位才会为1,即 \\(a\\) & \\(b\\) \\(\\leq\\) \\(a,b\\) ,因此我们的目标就是要让答案的二进制每一位尽可能为0,那么将整个序列都相与即为所求。

AC代码

#include <bits/stdc++.h>
#define rep(i, x, y) for (register int i = (x); i <= (y); i++)
#define down(i, x, y) for (register int i = (x); i >= (y); i--)

int t, n, ans, x;

inline int read()
{
    int x = 0, f = 1;
    char ch = getchar();
    while (ch < \'0\' || ch > \'9\')
    {
        if (ch == \'-\')
            f = -1;
        ch = getchar();
    }
    while (ch >= \'0\' && ch <= \'9\')
    {
        x = x * 10 + ch - \'0\';
        ch = getchar();
    }
    return x * f;
}

int main(int argc, char const *argv[])
{
    t = read();
    while (t--)
    {
        n = read();
        ans = read();
        rep(i, 2, n) x = read(), ans &= x;
        printf("%d\\n", ans);
    }
    return 0;
}

B. Mocha and Red and Blue

题意:给你一个由"B、R、?"三种字符组成的字符串,将其中的?用B或R代替,相邻的字符会使不完美度+1,输出最小化不完美度时的字符串

题目分析:贪心地选择每个已经上色的字符,并使它相邻两侧的?涂上与它不同的颜色,然后再次选择新上色的字符,重复执行上述操作,我们可以利用队列来实现算法。最后再遍历一遍字符串,给仍未上色的字符周期性地用B、R代替。

AC代码

#include <bits/stdc++.h>
#define rep(i, x, y) for (register int i = (x); i <= (y); i++)
#define down(i, x, y) for (register int i = (x); i >= (y); i--)

inline int read()
{
    int x = 0, f = 1;
    char ch = getchar();
    while (ch < \'0\' || ch > \'9\')
    {
        if (ch == \'-\')
            f = -1;
        ch = getchar();
    }
    while (ch >= \'0\' && ch <= \'9\')
    {
        x = x * 10 + ch - \'0\';
        ch = getchar();
    }
    return x * f;
}

//B is 1 , R is -1.
int main(int argc, char const *argv[])
{
    int t = read();
    while (t--)
    {
        std::queue<int> q;
        int n = read();
        char s[105];
        int vis[105];
        memset(vis, 0, sizeof(vis));
        scanf("%s", s + 1);
        rep(i, 1, n)
        {
            if (s[i] != \'?\')
            {
                vis[i] = (s[i] == \'B\' ? 1 : -1);
                q.push(i);
            }
        }
        while (!q.empty())
        {
            int pos = q.front();
            q.pop();
            if (vis[pos] == 1)
            {
                if (!vis[pos + 1] && pos + 1 <= n)
                {
                    vis[pos + 1] = -1;
                    q.push(pos + 1);
                }
                if (!vis[pos - 1] && pos - 1 > 0)
                {
                    vis[pos - 1] = -1;
                    q.push(pos - 1);
                }
            }
            else if (vis[pos] == -1)
            {
                if (!vis[pos + 1] && pos + 1 <= n)
                {
                    vis[pos + 1] = 1;
                    q.push(pos + 1);
                }
                if (!vis[pos - 1] && pos - 1 > 0)
                {
                    vis[pos - 1] = 1;
                    q.push(pos - 1);
                }
            }
        }
        int a = 1, b = -1;
        rep(i, 1, n) if (!vis[i]) vis[i] = a, std::swap(a, b);
        rep(i, 1, n)
        {
            if (vis[i] == 1)
                putchar(\'B\');
            else if (vis[i] == -1)
                putchar(\'R\');
        }
        puts("");
    }
    return 0;
}

C. Mocha and Hiking

题意:给你一张图,共有 \\(2n-1\\) 条边,其中 \\(n-1\\) 条边是从 \\(i\\)\\(i-1\\) ,另外 \\(n\\) 条边是从 \\(i\\)\\(n+1\\) 或从 \\(n+1\\)\\(i\\),问是否存在一种方案使得可以遍历整张图。

题目分析:dfs会超时(血的教训),实际上无非就三种情况特判:

  • \\(n\\) 能否到达点 \\(n+1\\)
  • \\(n+1\\) 能到达点 \\(1\\)
  • 是否存在某个点 \\(i\\) 可以到达点 \\(n+1\\) 并且从点 \\(n+1\\) 可以回到点 \\(i+1\\)

若三种情况都不满足,则不存在该方案

AC代码

#include <bits/stdc++.h>
#define rep(i, x, y) for (register int i = (x); i <= (y); i++)
#define down(i, x, y) for (register int i = (x); i >= (y); i--)
const int maxn = 1e4 + 5;

int a[maxn];

inline int read()
{
    int x = 0, f = 1;
    char ch = getchar();
    while (ch < \'0\' || ch > \'9\')
    {
        if (ch == \'-\')
            f = -1;
        ch = getchar();
    }
    while (ch >= \'0\' && ch <= \'9\')
    {
        x = x * 10 + ch - \'0\';
        ch = getchar();
    }
    return x * f;
}

int main(int argc, char const *argv[])
{
    int t = read();
    while (t--)
    {
        int n = read();
        rep(i, 1, n) a[i] = read();
        if (!a[n])
        {
            rep(i, 1, n + 1) printf("%d ", i);
            puts("");
            continue;
        }
        else if (a[1])
        {
            printf("%d ", n + 1);
            rep(i, 1, n) printf("%d ", i);
            puts("");
            continue;
        }
        else
        {
            int pos = -1;
            rep(i, 1, n) if (!a[i] && a[i + 1])
            {
                pos = i;
                break;
            }
            if (pos != -1)
            {
                rep(i, 1, pos)
                    printf("%d ", i);
                printf("%d ", n + 1);
                rep(i, pos + 1, n)
                    printf("%d ", i);
                puts("");
                continue;
            }
        }
        puts("-1");
    }
    return 0;
}

D1. Mocha and Diana (Easy Version)

题意:给你两张图,顶点数相同,初始边不同,在保证两张图是树形结构的情况下同时加边,问最多可以加多少条边,分别是哪些边。

题目分析:将已经连边的点放入同一个集合里,当我们要判断某两个点能否连边时,即看它们分别在两张图中是否都不属于同一个集合,因此可以用并查集维护,easy version \\(n\\) 的数据范围 \\(\\leq 1000\\) ,直接暴力枚举任意两点就好。

AC代码

#include <bits/stdc++.h>
#define rep(i, x, y) for (register int i = (x); i <= (y); i++)
#define down(i, x, y) for (register int i = (x); i >= (y); i--)
#define pii pair<int, int>
using namespace std;
const int maxn = 1005;

int t, n, m1, m2, ans, cnt1, cnt2;
int fa1[maxn], fa2[maxn];
vector<pii> vec;

inline int read()
{
    int x = 0, f = 1;
    char ch = getchar();
    while (ch < \'0\' || ch > \'9\')
    {
        if (ch == \'-\')
            f = -1;
        ch = getchar();
    }
    while (ch >= \'0\' && ch <= \'9\')
    {
        x = x * 10 + ch - \'0\';
        ch = getchar();
    }
    return x * f;
}

void init()
{
    ans = cnt1 = cnt2 = 0;
    rep(i, 0, n) fa1[i] = fa2[i] = i;
}

inline int find1(int x) { return x == fa1[x] ? x : fa1[x] = find1(fa1[x]); }

inline int find2(int x) { return x == fa2[x] ? x : fa2[x] = find2(fa2[x]); }

void merge1(int x, int y)
{
    int fx = find1(x), fy = find1(y);
    if (fx == fy)
        return;
    fa1[fx] = fy;
    ++cnt1;
}

void merge2(int x, int y)
{
    int fx = find2(x), fy = find2(y);
    if (fx == fy)
        return;
    fa2[fx] = fy;
    ++cnt2;
}

int main(int argc, char const *argv[])
{
    n = read(), m1 = read(), m2 = read();
    init();
    int x, y;
    rep(i, 1, m1)
    {
        x = read(), y = read();
        merge1(x, y);
    }
    rep(i, 1, m2)
    {
        x = read(), y = read();
        merge2(x, y);
    }
    rep(i, 1, n)
    {
        if (cnt1 == n - 1 || cnt2 == n - 1)
            break;
        rep(j, 1, n)
        {
            int fx1 = find1(i), fy1 = find1(j);
            int fx2 = find2(i), fy2 = find2(j);
            if ((fx1 != fy1) && (fx2 != fy2))
            {
                ++ans;
                merge1(i, j), merge2(i, j);
                vec.push_back(make_pair(i, j));
            }
        }
    }
    printf("%d\\n", ans);
    int nn = vec.size() - 1;
    rep(i, 0, nn) printf("%d %d\\n", vec[i].first, vec[i].second);
    return 0;
}

D2. Mocha and Diana (Hard Version)

题目分析:hard version \\(n\\) 的数据范围显然不允许我们使用 \\(n^2\\) 的算法,官方题解用的是启发式合并,其实评论区神犇给出了一种更优的解决方式:

首先任选一点 \\(i\\) ,尝试将 \\(i\\) 与其它所有点连边,设以点 \\(i\\) 为中心的大集合为 \\(U\\) ,此时会出现三种情况:

  • 两张图中,均有 \\(j \\notin U\\) ,在点 \\(i\\) 与 点\\(j\\) 间加一条边,并将点 \\(j\\) 丢进 \\(U\\)

  • 在第一、二张图中,分别有 \\(j \\notin U1\\)\\(j \\in U2\\) ,我们将 \\(j\\) 记录下来并存入堆栈 \\(v1\\)

  • 与上述情况相反,我们将 \\(j\\) 记录下来并存入堆栈 \\(v2\\)

接下来我们要做的就是匹配这些没有进入“大集合”中的点:

  • 如果 \\(v1\\) 顶部的点在大集合 \\(U1\\) 中,则将其删除

  • 如果 \\(v2\\) 顶部的点在大集合 \\(U2\\) 中,则将其删除

  • 否则,在 \\(v1\\) 顶部的点和 \\(v2\\) 顶部的点之间添加一条边。

感性地理解下,就是先找到一个点,把它能连上的边全连了,然后再根据两张图的情况在剩下的点间连边

可以证明该算法的正确性,且其复杂度近乎为 \\(O(n+m)\\)

AC代码

#include <bits/stdc++.h>
#define rep(i, x, y) for (register int i = (x); i <= (y); i++)
#define down(i, x, y) for (register int i = (x); i >= (y); i--)
#define pii std::pair<int, int>
#define mp std::make_pair
const int maxn = 1e5 + 10;

int n, m1, m2, x, y, fa1[maxn], fa2[maxn];
std::vector<int> v1, v2;
std::vector<pii> ans;

inline int read()
{
    int x = 0, f = 1;
    char ch = getchar();
    while (ch < \'0\' || ch > \'9\')
    {
        if (ch == \'-\')
            f = -1;
        ch = getchar();
    }
    while (ch >= \'0\' && ch <= \'9\')
    {
        x = x * 10 + ch - \'0\';
        ch = getchar();
    }
    return x * f;
}

inline int find1(int x) { return x == fa1[x] ? x : fa1[x] = find1(fa1[x]); }

inline int find2(int x) { return x == fa2[x] ? x : fa2[x] = find2(fa2[x]); }

void merge1(int x, int y)
{
    int fx = find1(x), fy = find1(y);
    if (fx == fy)
        return;
    fa1[fx] = fy;
}

void merge2(int x, int y)
{
    int fx = find2(x), fy = find2(y);
    if (fx == fy)
        return;
    fa2[fx] = fy;
}

int main(int argc, char const *argv[])
{
    n = read(), m1 = read(), m2 = read();
    rep(i, 1, n) fa1[i] = fa2[i] = i;
    rep(i, 1, m1)
    {
        x = read(), y = read();
        merge1(x, y);
    }
    rep(i, 1, m2)
    {
        x = read(), y = read();
        merge2(x, y);
    }
    rep(i, 2, n)
    {
        int fx1 = find1(1), fy1 = find1(i);
        int fx2 = find2(1), fy2 = find2(i);
        if (fx1 ^ fy1 && fx2 ^ fy2)
        {
            merge1(1, i), merge2(1, i);
            ans.push_back(mp(1, i));
        }
        if (fx1 ^ fy1)
            v1.push_back(i);
        if (fx2 ^ fy2)
            v2.push_back(i);
    }
    while (v1.size() && v2.size())
    {
        x = v1.back(), y = v2.back();
        int f1 = find1(1), f2 = find2(1);
        int fx = find1(x), fy = find2(y);
        if (fx == f1)
        {
            v1.pop_back();
            continue;
        }
        if (fy == f2)
        {
            v2.pop_back();
            continue;
        }
        merge1(x, y), merge2(x, y);
        ans.push_back(mp(x, y));
    }
    printf("%d\\n", ans.size());
    while (ans.size())
    {
        printf("%d %d\\n", ans.back().first, ans.back().second);
        ans.pop_back();
    }
    return 0;
}

以上是关于Codeforces Round #738 (Div. 2) 题解的主要内容,如果未能解决你的问题,请参考以下文章

Codeforces Round #738 (Div. 2) 题解

Codeforces Round #738 (Div. 2) A - D1 题解

Codeforces Round #738 (Div. 2) A - D1 题解

Codeforces Round #738 (Div. 2) A - D1 题解

Codeforces Round #738 (Div. 2)

Codeforces Round #738 (Div. 2) 题解