如何用原生Prometheus监控大规模Kubernetes集群

Posted 分布式实验室

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了如何用原生Prometheus监控大规模Kubernetes集群相关的知识,希望对你有一定的参考价值。


对于Prometheus的组件能力是毋庸置疑的,但是使用久了会发现很多的性能问题,诸如内存问题、大规模拉取问题、大规模存储问题等等。如何基于云原生Prometheus进行Kubernetes集群基础监控大规模数据拉取,本文将会给出答案。


架构图

如何用原生Prometheus监控大规模Kubernetes集群


如何用原生Prometheus监控大规模Kubernetes集群


上图是我们当前的监控平台架构图,根据架构图可以看出我们当前的监控平台结合了多个成熟开源组件和能力完成了当前集群的数据+指标+展示的工作。

当前我们监控不同的Kubernetes集群,包含不同功能、不同业务的集群,包含业务、基础和告警信息。


针对Kubernetes集群监控

如何用原生Prometheus监控大规模Kubernetes集群


我们采用常见的2种监控架构之一:

  • Prometheus-operator

  • Prometheus单独配置(选择的架构)


tips:对于Prometheus-operator确实易于部署化、简单的ServiceMonitor省了很大的力气,不过对于我们这样多种私有化集群来说维护成本稍微有点高,我们选择第二种方案更多的是想省略创建服务发现的步骤,更多的采用服务发现、服务注册的能力。


数据拉取

如何用原生Prometheus监控大规模Kubernetes集群


在数据拉取方面我们做了一定的调整,为了应对大规模节点或者数据对于apiserver的大压力问题和大规模数据拉取Prometheus内存OOM问题。

  • 利用Kubernetes做服务发现,监控数据拉取由Prometheus之间拉取,降低apiserver拉取压力

  • 采用Hashmod方式进行分布式拉取缓解内存压力


RBAC权限修改:

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRole
metadata:
  name: prometheus
  namespace: monitoring
rules:
- apiGroups: [""]
  resources:
  - nodes
  - nodes/proxy
  - nodes/metrics #新增路径为了外部拉取
  - nodes/metrics/cadvisor #新增路径为了外部拉取
  - services
  - endpoints
  - pods
  verbs: ["get""list""watch"]
- apiGroups:
  - extensions
  resources:
  - ingresses
  verbs: ["get""list""watch"]
- nonResourceURLs: ["/metrics"]
  verbs: ["get"]
---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: prometheus
  namespace: monitoring
---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
  name: prometheus
  namespace: monitoring
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: prometheus
subjects:
- kind: ServiceAccount
  name: prometheus
  namespace: monitoring

需要新增对于Node节点的/metrics和/metrics/cadvsior路径的拉取权限。

以完整配置拉取示例:

  • 对于Thanos的数据写入提供写入阿里云OSS示例

  • 对于node_exporter数据提取,线上除Kubernetes外皆使用Consul作为配置注册和发现

  • 对于业务自定义基于Kubernetes做服务发现和拉取


主机命名规则

机房-业务线-业务属性-序列数(例:bja-athena-etcd-001)

Consul自动注册示例脚本

#!/bin/bash
  

#ip=$(ip addr show eth0|grep inet | awk '{ print $2; }' | sed 's//.*$//')
ip=$(ip addr | egrep -o '[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}' | egrep "^192.168|^172.21|^10.101|^10.100" | egrep -v ".255$" | awk -F. '{print $1"."$2"."$3"."$4}' | head -n 1)
ahost=`echo $HOSTNAME`
idc=$(echo $ahost|awk -F "-" '{print $1}')
app=$(echo $ahost|awk -F "-" '{print $2}')
group=$(echo $ahost|awk -F "-" '{print $3}')

if [ "$app" != "test" ]
then
echo "success"
curl -X PUT -d "{"ID": "${ahost}_${ip}_node", "Name": "node_exporter", "Address": "${ip}", "tags": ["idc=${idc}","group=${group}","app=${app}","server=${ahost}"], "Port": 9100,"checks": [{"tcp":"${ip}:9100","interval": "60s"}]}" http://consul_server:8500/v1/agent/service/register
fi


完整配置文件示例

apiVersion: v1
kind: ConfigMap
metadata:
  name: prometheus-config
  namespace: monitoring
data:
  bucket.yaml: |
    type: S3
    config:
      bucket: "gcl-download"
      endpoint: "gcl-download.oss-cn-beijing.aliyuncs.com"
      access_key: "xxxxxxxxxxxxxx"
      insecure: false
      signature_version2: false
      secret_key: "xxxxxxxxxxxxxxxxxx"
      http_config:
        idle_conn_timeout: 0s

  prometheus.yml: |
    global:
      scrape_interval:     15s
      evaluation_interval: 15s

      external_labels:
         monitor: 'k8s-sh-prod'
         service: 'k8s-all'
         ID: 'ID_NUM'
         
    remote_write:
      - url: "http://vmstorage:8400/insert/0/prometheus/"
    remote_read:
      - url: "http://vmstorage:8401/select/0/prometheus"
         
    scrape_configs:
    - job_name: 'kubernetes-apiservers'
      kubernetes_sd_configs:
      - role: endpoints
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
        action: keep
        regex: default;kubernetes;https 
   
    - job_name: 'kubernetes-cadvisor'
      kubernetes_sd_configs:
      - role: node
      scheme: https
      tls_config:
        #ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
        insecure_skip_verify: true
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      #bearer_token: monitoring
      relabel_configs:
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)
      - source_labels: [__meta_kubernetes_node_address_InternalIP]
        regex: (.+)
        target_label: __address__
        replacement: ${1}:10250
      - source_labels: [__meta_kubernetes_node_name]
        regex: (.+)
        target_label: __metrics_path__
        replacement: /metrics/cadvisor
      - source_labels: [__meta_kubernetes_node_name]
        modulus:       10
        target_label:  __tmp_hash
        action:        hashmod
      - source_labels: [__tmp_hash]
        regex:         ID_NUM
        action:        keep
      metric_relabel_configs:
      - source_labels: [container]
        regex: (.+)
        target_label: container_name
        replacement: $1
        action: replace
      - source_labels: [pod]
        regex: (.+)
        target_label: pod_name
        replacement: $1
        action: replace
    
    - job_name: 'kubernetes-nodes'
      kubernetes_sd_configs:
      - role: node
      scheme: https
      tls_config:
        #ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
        insecure_skip_verify: true
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      #bearer_token: monitoring
      relabel_configs:
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)
      - source_labels: [__meta_kubernetes_node_address_InternalIP]
        regex: (.+)
        target_label: __address__
        replacement: ${1}:10250
      - source_labels: [__meta_kubernetes_node_name]
        regex: (.+)
        target_label: __metrics_path__
        replacement: /metrics
      - source_labels: [__meta_kubernetes_node_name]
        modulus:       10
        target_label:  __tmp_hash
        action:        hashmod
      - source_labels: [__tmp_hash]
        regex:         ID_NUM
        action:        keep
      metric_relabel_configs:
      - source_labels: [container]
        regex: (.+)
        target_label: container_name
        replacement: $1
        action: replace
      - source_labels: [pod]
        regex: (.+)
        target_label: pod_name
        replacement: $1
        action: replace

    - job_name: 'kubernetes-service-endpoints'
      kubernetes_sd_configs:
      - role: endpoints
        namespaces:
          names:
          - monitoring
      relabel_configs:
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
        action: keep
        regex: true
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
        action: replace
        target_label: __scheme__
        regex: (https?)
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
        action: replace
        target_label: __metrics_path__
        regex: (.+)
      - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
        action: replace
        target_label: __address__
        regex: ([^:]+)(?::d+)?;(d+)
        replacement: $1:$2
      - action: labelmap
        regex: __meta_kubernetes_service_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        action: replace
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_service_name]
        action: replace
        target_label: kubernetes_name

    - job_name: 'kubernetes-pods'
      kubernetes_sd_configs:
      - role: pod
        namespaces:
          names:
          - default
      relabel_configs:
      - action: labelmap
        regex: __meta_kubernetes_pod_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        action: replace
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_pod_name]
        action: replace
        target_label: kubernetes_pod_name

    - job_name: 'ingress-nginx-endpoints'
      kubernetes_sd_configs:
      - role: pod
        namespaces:
          names:
          - nginx-ingress
      relabel_configs:
      - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
        action: keep
        regex: true
      - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scheme]
        action: replace
        target_label: __scheme__
        regex: (https?)
      - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
        action: replace
        target_label: __metrics_path__
        regex: (.+)
      - source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
        action: replace
        target_label: __address__
        regex: ([^:]+)(?::d+)?;(d+)
        replacement: $1:$2

    - job_name: 'node_exporter'
      consul_sd_configs:
      - server: 'consul_server:8500'
      relabel_configs:
          - source_labels: [__address__]
          modulus:       10
          target_label:  __tmp_hash
          action:        hashmod
          - source_labels: [__tmp_hash]
          regex:         ID_NUM
          action:        keep
          - source_labels: [__tmp_hash]
          regex:       '(.*)'
          replacement: '${1}'
          target_label: hash_num
          - source_labels: [__meta_consul_tags]
          regex: .*test.*
          action: drop
          - source_labels: [__meta_consul_tags]
          regex: ',(?:[^,]+,){0}([^=]+)=([^,]+),.*'
          replacement: '${2}'
          target_label: '${1}'
          - source_labels: [__meta_consul_tags]
          regex: ',(?:[^,]+,){1}([^=]+)=([^,]+),.*'
          replacement: '${2}'
          target_label: '${1}'
          - source_labels: [__meta_consul_tags]
          regex: ',(?:[^,]+,){2}([^=]+)=([^,]+),.*'
          replacement: '${2}'
          target_label: '${1}'
          - source_labels: [__meta_consul_tags]
          regex: ',(?:[^,]+,){3}([^=]+)=([^,]+),.*'
          replacement: '${2}'
          target_label: '${1}'
          - source_labels: [__meta_consul_tags]
          regex: ',(?:[^,]+,){4}([^=]+)=([^,]+),.*'
          replacement: '${2}'
          target_label: '${1}'
          - source_labels: [__meta_consul_tags]
          regex: ',(?:[^,]+,){5}([^=]+)=([^,]+),.*'
          replacement: '${2}'
          target_label: '${1}'
          - source_labels: [__meta_consul_tags]
          regex: ',(?:[^,]+,){6}([^=]+)=([^,]+),.*'
          replacement: '${2}'
          target_label: '${1}'
          - source_labels: [__meta_consul_tags]
          regex: ',(?:[^,]+,){7}([^=]+)=([^,]+),.*'
          replacement: '${2}'
          target_label: '${1}'

    - job_name: '自定义业务监控'
      proxy_url: http://127.0.0.1:8888   #根据业务属性
      scrape_interval: 5s
      metrics_path: '/'  #根据业务提供路径
      params:   ##根据业务属性是否带有
        method: ['get']  
      kubernetes_sd_configs:
      - role: pod
      relabel_configs:
      - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
        action: keep
        regex: true
      - source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
        action: replace
        target_label: __address__
        regex: ([^:]+)(?::d+)?;(d+)
        replacement: $1:$2
      - source_labels: [__meta_kubernetes_pod_annotation_prometheus_name_label]
        action: keep
        regex: monitor  #业务自定义label
      - action: labelmap
        regex: __meta_kubernetes_pod_label_(.+)
      - source_labels: [__meta_kubernetes_pod_name]
        action: keep
        regex: (.*)
      - source_labels: [__meta_kubernetes_namespace]
        action: replace
        target_label: kubernetes_namespace


自定义业务拉取标识(可集成CI/CD)

template:
    metadata:
      annotations:
        prometheus.io/port: "port" #业务端口
        prometheus.io/scrape: "true"
        prometheus.name/label: monitor  #自定义标签


Hashmod配置方式

1、针对官方的镜像新增Hashmod模块分配值

Dockerfile:

FROM  prometheus/prometheus:2.20.0
MAINTAINER name gecailong

COPY ./entrypoint.sh /bin

ENTRYPOINT ["/bin/entrypoint.sh"]

entrypoint.sh:

#!/bin/sh

ID=${POD_NAME##*-}

cp /etc/prometheus/prometheus.yml /prometheus/prometheus-hash.yml

sed -i "s/ID_NUM/$ID/g" /prometheus/prometheus-hash.yml

/bin/prometheus --config.file=/prometheus/prometheus-hash.yml --query.max-concurrency=20 --storage.tsdb.path=/prometheus --storage.tsdb.max-block-duration=2h --storage.tsdb.min-block-duration=2h  --storage.tsdb.retention=2h --web.listen-address=:9090 --web.enable-lifecycle --web.enable-admin-api

IDNUM:为我们后面配置做准备

2、Prometheus部署

Prometheus配置文件:

prometheus.yml: |
      external_labels:
         monitor: 'k8s-sh-prod'
         service: 'k8s-all'
         ID: 'ID_NUM'
         ...

这个ID是为了我们在查询的时候可以区分同时也可以作为等下Hashmod模块的对应值。

部署文件:

---
apiVersion: apps/v1
kind: StatefulSet
metadata:
  labels:
    app: prometheus
  name: prometheus-sts
  namespace: monitoring
spec:
  serviceName: "prometheus"
  replicas: 10 #Hashmod总模块数
  selector:
    matchLabels:
      app: prometheus
  template:
    metadata:
      labels:
        app: prometheus
    spec:
      containers:
      - image: gecailong/prometheus-hash:0.0.1
        name: prometheus
        securityContext:
           runAsUser: 0
        command:
        - "/bin/entrypoint.sh"
        env:
        - name: POD_NAME  #根据StatefulSet的特性传入Pod名称用于模块取值
          valueFrom:
            fieldRef:
              apiVersion: v1
              fieldPath: metadata.name
        ports:
        - name: http
          containerPort: 9090
          protocol: TCP
        volumeMounts:
        - mountPath: "/etc/prometheus"
          name: config-volume
        - mountPath: "/prometheus"
          name: data
        resources:
          requests:
            cpu: 500m
            memory: 1000Mi
          limits:
            memory: 2000Mi
      - image: gecailong/prometheus-thanos:v0.17.1
        name: sidecar
        imagePullPolicy: IfNotPresent
        args:
        - "sidecar"
        - "--grpc-address=0.0.0.0:10901"
        - "--grpc-grace-period=1s"
        - "--http-address=0.0.0.0:10902"
        - "--http-grace-period=1s"
        - "--prometheus.url=http://127.0.0.1:9090"
        - "--tsdb.path=/prometheus"
        - "--log.level=info"
        - "--objstore.config-file=/etc/prometheus/bucket.yaml"
        ports:
        - name: http-sidecar
          containerPort: 10902
        - name: grpc-sidecar
          containerPort: 10901
        volumeMounts:
        - mountPath: "/etc/prometheus"
          name: config-volume
        - mountPath: "/prometheus"
          name: data
      serviceAccountName: prometheus
      hostNetwork: true
      dnsPolicy: ClusterFirstWithHostNet
      imagePullSecrets: 
        - name: regsecret
      volumes:
      - name: config-volume
        configMap:
          name: prometheus-config
      - name: data
        hostPath:
          path: /data/prometheus


数据聚合

如何用原生Prometheus监控大规模Kubernetes集群


Thanos我们从18年一开始就用的它,虽然一开始的版本有很多bug,也给我们带来了很多困扰,同时我们也提了很多的issue,慢慢的稳定之后,我们在此之前线上都是使用v0.2.1版本,最新的版本已经去除了基于grpc cluster服务发现的功能,UI也更加的丰富。我们也进行了监控平台架构重构。

我们数据聚合采用Thanos进行查询数据聚合,同时后面我们提到的数据存储组件victoriametrics也可以实现数据聚合的功能,针对Thanos,我们主要使用它的几个子组件:query、sidecar、rule,至于其他的组件如compact、store、bucket等依据自己的业务没有进行使用。

我们的Thanos+Prometheus的架构图已在开头展示,以下仅给出部署和注意事项:

Thanos组件部署:

sidecar(我们采用和Prometheus放在同一Pod):

- image: gecailong/prometheus-thanos:v0.17.1
        name: thanos
        imagePullPolicy: IfNotPresent
        args:
        - "sidecar"
        - "--grpc-address=0.0.0.0:10901"
        - "--grpc-grace-period=1s"
        - "--http-address=0.0.0.0:10902"
        - "--http-grace-period=1s"
        - "--prometheus.url=http://127.0.0.1:9090"
        - "--tsdb.path=/prometheus"
        - "--log.level=info"
        - "--objstore.config-file=/etc/prometheus/bucket.yaml"
        ports:
        - name: http-sidecar
          containerPort: 10902
        - name: grpc-sidecar
          containerPort: 10901
        env:
        - name: POD_NAME
          valueFrom:
            fieldRef:
              fieldPath: metadata.name
        volumeMounts:
        - mountPath: "/etc/prometheus"
          name: config-volume
        - mountPath: "/prometheus"
          name: data

query组件部署:

---
apiVersion: apps/v1
kind: StatefulSet
metadata:
  labels:
    app: query
  name: thanos-query
  namespace: monitoring
spec:
  replicas: 3
  selector:
    matchLabels:
      app: query
  template:
    metadata:
      labels:
        app: query
    spec:
      containers:
      - image: gecailong/prometheus-thanos:v0.17.1
        name: query
        imagePullPolicy: IfNotPresent
        args:
        - "query"
        - "--http-address=0.0.0.0:19090"
        - "--grpc-address=0.0.0.0:10903"
        - "--store=dnssrv+_grpc._tcp.prometheus-sidecar-svc.monitoring.svc.cluster.local"
        - "--store=dnssrv+_grpc._tcp.sidecar-query.monitoring.svc.cluster.local"
        - "--store=dnssrv+_grpc._tcp.sidecar-rule.monitoring.svc.cluster.local"
        ports:
        - name: http-query
          containerPort: 19090
        - name: grpc-query
          containerPort: 10903
        env:
        - name: POD_NAME
          valueFrom:
            fieldRef:
              fieldPath: metadata.name
      hostNetwork: true
      dnsPolicy: ClusterFirstWithHostNet

rule组件部署:

---
apiVersion: apps/v1
kind: StatefulSet
metadata:
  labels:
    app: query
  name: thanos-rule
  namespace: monitoring
spec:
  replicas: 2
  serviceName: "sidecar-rule"
  selector:
    matchLabels:
      app: rule
  template:
    metadata:
      labels:
        app: rule
    spec:
      containers:
      - image: gecailong/prometheus-thanos:v0.17.1
        name: rule
        imagePullPolicy: IfNotPresent
        args:
        - "rule"
        - "--http-address=0.0.0.0:10902"
        - "--grpc-address=0.0.0.0:10901"
        - "--data-dir=/data"
        - "--rule-file=/prometheus-rules/*.yaml"
        - "--alert.query-url=http://sidecar-query:19090"
        - "--alertmanagers.url=http://alertmanager:9093"
        - "--query=http://sidecar-query:19090"
        env:
        - name: POD_NAME
          valueFrom:
            fieldRef:
              fieldPath: metadata.name
        volumeMounts:
        - mountPath: "/prometheus-rules"
          name: config-volume
        - mountPath: "/data"
          name: data
        resources:
          requests:
            cpu: 100m
            memory: 100Mi
          limits:
            memory: 1500Mi
      hostNetwork: true
      dnsPolicy: ClusterFirstWithHostNet
      volumes:
      - name: config-volume
        configMap:
          name: prometheus-rule
      - name: data
        hostPath:
          path: /data/prometheus

rule通用告警规则和配置:

apiVersion: v1
kind: ConfigMap
metadata:
  name: prometheus-rule
  namespace: monitoring
data:
  k8s_cluster_rule.yaml: |+
    groups:
    - name: pod_etcd_monitor
      rules:
      - alert: pod_etcd_num_is_changing
        expr: sum(kube_pod_info{pod=~"etcd.*"})by(monitor) < 3
        for: 1m
        labels:
          level: high
          service: etcd
        annotations:
          summary: "集群:{{ $labels.monitor }},etcd集群pod低于正常总数"
          description: "总数为3,当前值是{{ $value}}"
    - name: pod_scheduler_monitor
      rules:
      - alert: pod_scheduler_num_is_changing
        expr: sum(kube_pod_info{pod=~"kube-scheduler.*"})by(monitor) < 3
        for: 1m
        labels:
          level: high
          service: scheduler
        annotations:
          summary: "集群:{{ $labels.monitor }},scheduler集群pod低于正常总数"
          description: "总数为3,当前值是{{ $value}}"
    - name: pod_controller_monitor
      rules:
      - alert: pod_controller_num_is_changing
        expr: sum(kube_pod_info{pod=~"kube-controller-manager.*"})by(monitor) < 3
        for: 1m
        labels:
          level: high
          service: controller
        annotations:
          summary: "集群:{{ $labels.monitor }},controller集群pod低于正常总数"
          description: "总数为3,当前值是{{ $value}}"
    - name: pod_apiserver_monitor
      rules:
      - alert: pod_apiserver_num_is_changing
        expr: sum(kube_pod_info{pod=~"kube-apiserver.*"})by(monitor) < 3
        for: 1m
        labels:
          level: high
          service: controller
        annotations:
          summary: "集群:{{ $labels.monitor }},apiserver集群pod低于正常总数"
          description: "总数为3,当前值是{{ $value}}"

  k8s_master_resource_rules.yaml: |+
    groups:
    - name: node_cpu_resource_monitor
      rules:
      - alert: 节点CPU使用量
        expr:  sum(kube_pod_container_resource_requests_cpu_cores{node=~".*"})by(node)/sum(kube_node_status_capacity_cpu_cores{node=~".*"})by(node)>0.7
        for: 1m
        labels:
          level: disaster
          service: node
        annotations:
          summary: "集群NODE节点总的CPU使用核数已经超过了70%"
          description: "集群:{{ $labels.monitor }},节点:{{ $labels.node }}当前值为{{ $value }}!"
    - name: node_memory_resource_monitor
      rules:
      - alert: 节点内存使用量
        expr:  sum(kube_pod_container_resource_limits_memory_bytes{node=~".*"})by(node)/sum(kube_node_status_capacity_memory_bytes{node=~".*"})by(node)>0.7
        for: 1m
        labels:
          level: disaster
          service: node
        annotations:
          summary: "集群NODE节点总的memory使用核数已经超过了70%"
          description: "集群:{{ $labels.monitor }},节点:{{ $labels.node }}当前值为{{ $value }}!"
    - name: 节点POD使用率
      rules:
      - alert: 节点pod使用率
        expr: sum by(node,monitor) (kube_pod_info{node=~".*"}) / sum by(node,monitor) (kube_node_status_capacity_pods{node=~".*"})> 0.9
        for: 1m
        labels:
          level: disaster
          service: node
        annotations:
          summary: "集群NODE节点总的POD使用数量已经超过了90%"
          description: "集群:{{ $labels.monitor }},节点:{{ $labels.node }}当前值为{{ $value }}!"      
    - name: master_cpu_used
      rules:
      - alert: 主节点CPU使用率
        expr:  sum(kube_pod_container_resource_limits_cpu_cores{node=~'master.*'})by(node)/sum(kube_node_status_capacity_cpu_cores{node=~'master.*'})by(node)>0.7
        for: 1m
        labels:
          level: disaster
          service: node
        annotations:
          summary: "集群Master节点总的CPU申请核数已经超过了0.7,当前值为{{ $value }}!"
          description: "集群:{{ $labels.monitor }},节点:{{ $labels.node }}当前值为{{ $value }}!" 
    - name: master_memory_resource_monitor
      rules:
      - alert: 主节点内存使用率
        expr:  sum(kube_pod_container_resource_limits_memory_bytes{node=~'master.*'})by(node)/sum(kube_node_status_capacity_memory_bytes{node=~'master.*'})by(node)>0.7
        for: 1m
        labels:
          level: disaster
          service: node
        annotations:
          summary: "集群Master节点总的内存使用量已经超过了70%"
          description: "集群:{{ $labels.monitor }},节点:{{ $labels.node }}当前值为{{ $value }}!"
    - name: master_pod_resource_monitor
      rules:
      - alert: 主节点POD使用率
        expr: sum(kube_pod_info{node=~"master.*"}) by (node) / sum(kube_node_status_capacity_pods{node=~"master.*"}) by (node)>0.7
        for: 1m
        labels:
          level: disaster
          service: node
        annotations:
          summary: "集群Master节点总的POD使用数量已经超过了70%"
          description: "集群:{{ $labels.monitor }},节点:{{ $labels.node }}当前值为{{ $value }}!"     
  k8s_node_rule.yaml: |+
    groups:
    - name: K8sNodeMonitor
      rules:
      - alert: 集群节点资源监控
        expr: kube_node_status_condition{condition=~"OutOfDisk|MemoryPressure|DiskPressure",status!="false"} ==1
        for: 1m
        labels:
          level: disaster
          service: node
        annotations:
          summary: "集群节点内存或磁盘资源短缺"
          description: "节点:{{ $labels.node }},集群:{{ $labels.monitor }},原因:{{ $labels.condition }}"
      - alert: 集群节点状态监控
        expr: sum(kube_node_status_condition{condition="Ready",status!="true"})by(node)  == 1
        for: 2m
        labels:
          level: disaster
          service: node
        annotations:
          summary: "集群节点状态出现错误"
          description: "节点:{{ $labels.node }},集群:{{ $labels.monitor }}"
      - alert: 集群POD状态监控
        expr: sum (kube_pod_container_status_terminated_reason{reason!~"Completed|Error"})  by (pod,reason) ==1
        for: 1m
        labels:
          level: high
          service: pod
        annotations:
          summary: "集群pod状态出现错误"
          description: "集群:{{ $labels.monitor }},名称:{{ $labels.pod }},原因:{{ $labels.reason}}"
      - alert: 集群节点CPU使用监控
        expr:  sum(node_load1) BY (instance) / sum(rate(node_cpu_seconds_total[1m])) BY (instance) > 2
        for: 5m
        labels:
          level: disaster
          service: node
        annotations:
          summary: "机器出现cpu平均负载过高"
          description: "节点: {{ $labels.instance }}平均每核大于2"
      - alert: NodeMemoryOver80Percent
        expr:  (1 - avg by (instance)(node_memory_MemAvailable_bytes / node_memory_MemTotal_bytes))* 100 >85
        for: 1m
        labels:
          level: disaster
          service: node
        annotations:
          summary: "机器出现内存使用超过85%"
          description: "节点: {{ $labels.instance }}"
  k8s_pod_rule.yaml: |+
    groups:
      - name: pod_status_monitor
        rules:
        - alert: pod错误状态监控
          expr: changes(kube_pod_status_phase{phase=~"Failed"}[5m]) >0
          for: 1m
          labels:
            level: high
            service: pod-failed
          annotations:
            summary: "集群:{{ $labels.monitor }}存在pod状态异常"
            description: "pod:{{$labels.pod}},状态:{{$labels.phase}}"
        - alert: pod异常状态监控
          expr: sum(kube_pod_status_phase{phase="Pending"})by(namespace,pod,phase)>0
          for: 3m
          labels:
            level: high
            service: pod-pending
          annotations:
            summary: "集群:{{ $labels.monitor }}存在pod状态pening异常超10分钟"
            description: "pod:{{$labels.pod}},状态:{{$labels.phase}}"
        - alert: pod等待状态监控
          expr: sum(kube_pod_container_status_waiting_reason{reason!="ContainerCreating"})by(namespace,pod,reason)>0
          for: 1m
          labels:
            level: high
            service: pod-wait
          annotations:
            summary: "集群:{{ $labels.monitor }}存在pod状态Wait异常超5分钟"
            description: "pod:{{$labels.pod}},状态:{{$labels.reason}}"
        - alert: pod非正常状态监控
          expr: sum(kube_pod_container_status_terminated_reason)by(namespace,pod,reason)>0
          for: 1m
          labels:
            level: high
            service: pod-nocom
          annotations:
            summary: "集群:{{ $labels.monitor }}存在pod状态Terminated异常超5分钟"
            description: "pod:{{$labels.pod}},状态:{{$labels.reason}}"
        - alert: pod重启监控
          expr: changes(kube_pod_container_status_restarts_total[20m])>3
          for: 3m
          labels:
            level: high
            service: pod-restart
          annotations:
            summary: "集群:{{ $labels.monitor }}存在pod半小时之内重启次数超过3次!"
            description: "pod:{{$labels.pod}}"
      - name: deployment_replicas_monitor
        rules:
        - alert: deployment监控
          expr: sum(kube_deployment_status_replicas_unavailable)by(namespace,deployment) >2
          for: 3m
          labels:
            level: high
            service: deployment-replicas
          annotations:
            summary: "集群:{{ $labels.monitor }},deployment:{{$labels.deployment}} 副本数未达到期望值! "
            description: "空间:{{$labels.namespace}},当前不可用副本:{{$value}},请检查"
      - name: daemonset_replicas_monitor
        rules:
        - alert: Daemonset监控
          expr: sum(kube_daemonset_status_desired_number_scheduled - kube_daemonset_status_current_number_scheduled)by(daemonset,namespace) >2
          for: 3m
          labels:
            level: high
            service: daemonset
          annotations:
            summary: "集群:{{ $labels.monitor }},daemonset:{{$labels.daemonset}} 守护进程数未达到期望值!"
            description: "空间:{{$labels.namespace}},当前不可用副本:{{$value}},请检查"
      - name: satefulset_replicas_monitor
        rules:
        - alert: Satefulset监控
          expr: (kube_statefulset_replicas - kube_statefulset_status_replicas_ready) >2
          for: 3m
          labels:
            level: high
            service: statefulset
          annotations:
            summary: "集群:{{ $labels.monitor }},statefulset:{{$labels.statefulset}} 副本数未达到期望值!"
            description: "空间:{{$labels.namespace}},当前不可用副本:{{$value}},请检查"
      - name: pvc_replicas_monitor
        rules:
        - alert: PVC监控
          expr: kube_persistentvolumeclaim_status_phase{phase!="Bound"} == 1
          for: 5m
          labels:
            level: high
            service: pvc
          annotations:
            summary: "集群:{{ $labels.monitor }},statefulset:{{$labels.persistentvolumeclaim}} 异常未bound成功!"
            description: "pvc出现异常"
      - name: K8sClusterJob
        rules:   
        - alert: 集群JOB状态监控
          expr: sum(kube_job_status_failed{job="kubernetes-service-endpoints",k8s_app="kube-state-metrics"})by(job_name) ==1
          for: 1m
          labels:
            level: disaster
            service: job
          annotations:
            summary: "集群存在执行失败的Job"
            description: "集群:{{ $labels.monitor }},名称:{{ $labels.job_name }}"
      - name: pod_container_cpu_resource_monitor
        rules:
        - alert: 容器内cpu占用监控
          expr: namespace:container_cpu_usage_seconds_total:sum_rate / sum(kube_pod_container_resource_limits_cpu_cores) by (monitor,namespace,pod_name)> 0.8
          for: 1m
          labels:
            level: high
            service: container_cpu
          annotations:
            summary: "集群:{{ $labels.monitor }} 出现Pod CPU使用率已经超过申请量的80%,"
            description: "namespace:{{$labels.namespace}}的pod:{{$labels.pod}},当前值为{{ $value }}"
        - alert: 容器内mem占用监控
          expr: namespace:container_memory_usage_bytes:sum/ sum(kube_pod_container_resource_limits_memory_bytes)by(monitor,namespace,pod_name) > 0.8
          for: 2m
          labels:
            level: high
            service: container_mem
          annotations:
            summary: "集群:{{ $labels.monitor }} 出现Pod memory使用率已经超过申请量的90%"
            description: "namespace:{{$labels.namespace}}的pod:{{$labels.pod}},当前值为{{ $value }}"
        
  redis_rules.yaml: |+
    groups:
    - name: k8s_container_rule
    rules:
    - expr: sum(rate(container_cpu_usage_seconds_total[5m])) by (monitor,namespace,pod_name)
        record: namespace:container_cpu_usage_seconds_total:sum_rate
    - expr: sum(container_memory_usage_bytes{container_name="POD"}) by (monitor,namespace,pod_name)
        record: namespace:container_memory_usage_bytes:sum

注意:因为组件都在同一集群,我们采用DNS SRV的方式进行发现其他组件节点,其实对于容器内部的DNS SRV方便很多,我们只需要创建一个需要的Headless Service并且使用DNS SRV的话,设置 clusterIP: None即可。

thanos-query-svc:

apiVersion: v1
kind: Service
metadata:
  labels:
    app: query
  name: sidecar-query
spec:
  ports:
  - name: web
    port: 19090
    protocol: TCP
    targetPort: 19090
  selector:
    app: query

thanos-rule-svc:

apiVersion: v1
kind: Service
metadata:
  labels:
    app: rule
  name: sidecar-rule
spec:
  clusterIP: None
  ports:
  - name: web
    port: 10902
    protocol: TCP
    targetPort: 10902
  - name: grpc
    port: 10901
    protocol: TCP
    targetPort: 10901
  selector:
    app: rule

Prometheus+sidecar:

apiVersion: v1
kind: Service
metadata:
  labels:
    app: prometheus
  name: prometheus-sidecar-svc
spec:
  clusterIP: None
  ports:
  - name: web
    port: 9090
    protocol: TCP
    targetPort: 9090
  - name: grpc
    port: 10901
    protocol: TCP
    targetPort: 10901
  selector:
    app: prometheus

效果图:

Pod指标监控多集群示例:

如何用原生Prometheus监控大规模Kubernetes集群

监控告警规则示例:

如何用原生Prometheus监控大规模Kubernetes集群


Thanos首页:

如何用原生Prometheus监控大规模Kubernetes集群


数据存储

如何用原生Prometheus监控大规模Kubernetes集群


对于Prometheus的数据存储我们也走了很多的弯路。

开始我们使用过InfluxDB最终因为集群版问题放弃了,也试过重写Prometheus-adapter接入OpenTSDB,后来因为部分通配符维护难问题也放弃了(其实还是tcollecter的搜集问题放弃的),我们也尝试过用Thanos-store S3打入Ceph因为副本问题成本太高,也打入过阿里云的OSS,存的多,但是取数据成了一个问题。后面我们迎来了VictoriaMetrics,能解决我们大部分的主要问题。

架构:

如何用原生Prometheus监控大规模Kubernetes集群


VictoriaMetrics本身是一个时序数据库,对于这样一个远端存储,同时也可以单独作为Prometheus数据源查询使用。

优势:

  • 具有较高的压缩比和高性能

  • 可以提供和Prometheus同等的数据源展示

  • 支持MetricsQL同时查询时进行相同Meitrics数据聚合

  • 开源的集群版本(简直无敌)


对于VictoriaMetrics我们做过一个简单的测试,相同的数据在和Prometheus原有数据对比中内存大概减少50%,CPU节省超40%,磁盘占用减少约40%,并且我们通过这种方式分离了写入和读取的通道避免了新老数据共存内存造成的大内存和OOM问题,也同时提供了一个长期数据存储的成本方案。

VictoriaMetrics部署:

vminsert部署:

apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: monitor-vminsert
spec:
  revisionHistoryLimit: 10
  selector:
    matchLabels:
      vminsert: online
  template:
    metadata:
      labels:
        vminsert: online
    spec:
      containers:
      - args:
        - -storageNode=vmstorage:8400
        image: victoriametrics/vminsert:v1.39.4-cluster
        imagePullPolicy: IfNotPresent
        name: vminsert
        ports:
        - containerPort: 8480
          name: vminsert
          protocol: TCP
      dnsPolicy: ClusterFirst
      hostNetwork: true
      nodeSelector:
        vminsert: online
      restartPolicy: Always
  updateStrategy:
    rollingUpdate:
      maxUnavailable: 1
    type: RollingUpdate

vmselect部署:

apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: monitor-vmselect
spec:
  revisionHistoryLimit: 10
  selector:
    matchLabels:
      vmselect: online
  template:
    metadata:
      labels:
        vmselect: online
    spec:
      containers:
      - args:
        - -storageNode=vmstorage:8400
        image: victoriametrics/vmselect:v1.39.4-cluster
        imagePullPolicy: IfNotPresent
        name: vmselect
        ports:
        - containerPort: 8481
          name: vmselect
          protocol: TCP
      dnsPolicy: ClusterFirst
      hostNetwork: true
      nodeSelector:
        vmselect: online
      restartPolicy: Always
  updateStrategy:
    rollingUpdate:
      maxUnavailable: 1
    type: RollingUpdate

vmstorage部署:

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: monitor-vmstorage
spec:
  replicas: 10
  serviceName: vmstorage
  revisionHistoryLimit: 10
  selector:
    matchLabels:
      vmstorage: online
  template:
    metadata:
      labels:
        vmstorage: online
    spec:
      containers:
      - args:
        - --retentionPeriod=1
        - --storageDataPath=/storage
        image: victoriametrics/vmstorage:v1.39.4-cluster
        imagePullPolicy: IfNotPresent
        name: vmstorage
        ports:
        - containerPort: 8482
          name: http
          protocol: TCP
        - containerPort: 8400
          name: vminsert
          protocol: TCP
        - containerPort: 8401
          name: vmselect
          protocol: TCP
        volumeMounts:
        - mountPath: /data
          name: data
      hostNetwork: true
      nodeSelector:
        vmstorage: online
      restartPolicy: Always
      volumes:
      - hostPath:
          path: /data/vmstorage
          type""
        name: data

vmstorage-svc(提供接口供查询、写入):

apiVersion: v1
kind: Service
metadata:
  labels:
    vmstorage: staging
  name: vmstorage
spec:
  ports:
  - name: http
    port: 8482
    protocol: TCP
    targetPort: http
  - name: vmselect
    port: 8401
    protocol: TCP
    targetPort: vmselect
  - name: vminsert
    port: 8400
    protocol: TCP
    targetPort: vminsert
  selector:
    vmstorage: staging
  type: NodePort

vminsert-svc:

apiVersion: v1
kind: Service
metadata:
  labels:
    vminsert: online
  name: monitor-vminsert
spec:
  ports:
  - name: vminsert
    port: 8480
    protocol: TCP
    targetPort: vminsert
  selector:
    vminsert: online
  type: NodePort

vmselet-svc:

apiVersion: v1
kind: Service
metadata:
  labels:
    vmselect: online
  name: monitor-vmselect
spec:
  ports:
  - name: vmselect
    port: 8481
    protocol: TCP
    targetPort: vmselect
  selector:
    vmselect: online
  type: NodePort

进行部署完成后需要修改Prometheus配置进行写入和查询支持:

remote_write:
      - url: "http://vmstorage:8400/insert/0/prometheus/"
    remote_read:
      - url: "http://vmstorage:8401/select/0/prometheus"

Grafana数据源配置:

选择数据源类型:Prometheus
http://vmstorage:8401/select/0/prometheus

效果图:

如何用原生Prometheus监控大规模Kubernetes集群


告警信息

如何用原生Prometheus监控大规模Kubernetes集群


告警规则都是由thanos rule推送至Alertmanager。

告警采用Alertmanager进行告警,同时搭配自己的告警平台进行告警的分发。

在配置中我们按照alertname和monitor进行分组,可以实现相同alert name下的所有告警分成一个组,进行基于Prometheus的聚合告警,同时因为现网Pod较多,如发生大规模Pod异常进行聚合时数据较大,单独分类。效果如后面展示。

告警静默配置:因为现网告警都在label中定义了告警级别(warning、high、disaster)级别,对于最低级别的告警我们默认不走告警平台,根据告警的等级和告警规则进行静默。

例:

  • 同monitor集群下某一个alertname按照instance进行静默

  • 对于大量Pod告警我们基于Pod告警类型进行静默


第一次告警时会根据分组聚合信息进行所有告警信息推送。

Alertmanager配置:

global:
  smtp_smarthost: 'mail.xxxxxxx.com:25'
  smtp_from: 'xxxxxxx@xxxxxxx.com'
  smtp_auth_username: 'xxxxxxx@xxxxxxx.com'
  smtp_auth_password: 'xxxxxxx'
  smtp_require_tls: false

route:
  group_by: ['alertname','pod','monitor']
  group_wait: 10s
  group_interval: 10s
  repeat_interval: 6h
  receiver: 'webhook'

  routes:
  - receiver: 'mail'
    match:
      level: warning

receivers:
- name: 'mail'
  email_configs:
  - to: 'amend@xxxxx.com,amend2@xxxxx.com'
    send_resolved: true

- name: 'webhook'
  webhook_configs:
  - url: 'http://alert.xxx.com/alert/prometheus'
    send_resolved: true
inhibit_rules:
  - source_match:
      level: 'disaster'
    target_match_re:
      level: 'high|disaster'
    equal: ['alertname','instance','monitor']
  - source_match:
      level: 'high'
    target_match_re:
      level: 'high'
    equal: ['alertname','instance','monitor']

告警聚合代码示例(Python):

try:
            payload = eval(self.request.body)
        except json.decoder.JSONDecodeError:
            raise web.HTTPError(400)
        alert_row = payload['alerts']
        try:
            if len(alert_row) <2:
               description =  alert_row[0]['annotations']['description']
               summary =  alert_row[0]['annotations']['summary']
            else:
               for alert in alert_row:
                   description +=  alert['annotations']['description'] + ' '
               summary = '[聚合告警] '+ alert_row[0]['annotations']['summary']
        except:
            pass
        try:
            namespace =  alert_row[0]['labels']['namespace']
        except:
            pass

效果:

对于Pod的监控:

如何用原生Prometheus监控大规模Kubernetes集群


对于instance级别告警:

如何用原生Prometheus监控大规模Kubernetes集群


对于业务级别告警:


源码和模板:https://github.com/gecailong/K8sMonitor

参考:

  1. https://github.com/thanos-io/thanos

  2. https://github.com/VictoriaMetrics/VictoriaMetrics

  3. https://github.com/gecailong/K8sMonitor

  4. https://blog.csdn.net/liukuan73/article/details/78881008


原文链接:https://www.noalert.cn/post/ru-he-yong-yuan-sheng-prometheus-jian-kong-da-gui-mo-kubernetes-ji-qun/


Kubernetes实战培训


Kubernetes实战培训将于2020年12月25日在深圳开课,3天时间带你系统掌握Kubernetes,学习效果不好可以继续学习。本次培训包括:云原生介绍、微服务;Docker基础、Docker工作原理、镜像、网络、存储、数据卷、安全;Kubernetes架构、核心组件、常用对象、网络、存储、认证、服务发现、调度和服务质量保证、日志、监控、告警、Helm、实践案例等,点击下方图片或者阅读原文链接查看详情。


以上是关于如何用原生Prometheus监控大规模Kubernetes集群的主要内容,如果未能解决你的问题,请参考以下文章

在微服务架构下基于 Prometheus 构建一体化监控平台的最佳实践

打造云原生大型分布式监控系统: Kvass+Thanos 监控超大规模容器集群

云原生时代如何用 Prometheus 实现性能压测可观测-Metrics 篇

如何用go自定义prometheus的exporter

云原生监控告警实战

分享预告 | 基于Prometheus的云原监控系统架构演进