kubernetes(k8s)介绍
Posted givenchy_yzl
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了kubernetes(k8s)介绍相关的知识,希望对你有一定的参考价值。
一、概述
储备知识
Kubernetes 是什么?
Kubernetes 是一个可移植的、可扩展的开源平台,用于管理容器化的工作负载和服务,可促进声明式配置和自动化。 Kubernetes 拥有一个庞大且快速增长的生态系统。Kubernetes 的服务、支持和工具广泛可用。
在集群管理方面,Kubernetes将集群中的机器划分为一个 Master 节点和一群工作节点 Node,其中,在 Master 节点运行着集群管理相关的一组进程 kube-apiserver、kube-controller-manager 和 kube-scheduler,这些进程 实现了整个集群的资源管理、Pod 调度、弹性伸缩、安全控制、系统监控和纠错等管理能力,并且都是全自动完 成的。Node 作为集群中的工作节点,运行真正的应用程序,在 Node 上 Kubernetes 管理的最小运行单元是 Pod。 Node 上运行着 Kubernetes 的 kubelet、kube-proxy 服务进程,这些服务进程负责 Pod 的创建、启动、监控、 重启、销毁以及实现软件模式的负载均衡器。
起源:
Kubernetes 这个名字源于希腊语,意为“舵手”或“飞行员”。k8s 这个缩写是因为 k 和 s 之间有八个字符的关系。 Google 在 2014 年开源了 Kubernetes 项目。Kubernetes 建立在 Google 在大规模运行生产工作负载方面拥有十几年的经验 的基础上,结合了社区中最好的想法和实践。
容器化时代与其他时代对比图如下:
hypervisor:管理程序
hardware:硬件
传统部署时代:
早期,各个组织机构在物理服务器上运行应用程序。无法为物理服务器中的应用程序定义资源边界,这会导致资源分配问题。 例如,如果在物理服务器上运行多个应用程序,则可能会出现一个应用程序占用大部分资源的情况, 结果可能导致其他应用程序的性能下降。 一种解决方案是在不同的物理服务器上运行每个应用程序,但是由于资源利用不足而无法扩展, 并且维护许多物理服务器的成本很高。
虚拟化部署时代:
作为传统部署的解决方案,引入了虚拟化。虚拟化技术允许你在单个物理服务器的 CPU 上运行多个虚拟机(VM)。 虚拟化允许应用程序在 VM 之间隔离,并提供一定程度的安全,因为一个应用程序的信息 不能被另一应用程序随意访问。
虚拟化技术能够更好地利用物理服务器上的资源,并且因为可轻松地添加或更新应用程序 而可以实现更好的可伸缩性,降低硬件成本等等。
每个 VM 是一台完整的计算机,在虚拟化硬件之上运行所有组件,包括其自己的操作系统。
容器部署时代:
容器类似于 VM,但是它们具有被放宽的隔离属性,可以在应用程序之间共享操作系统(OS)。 因此,容器被认为是轻量级的。容器与 VM 类似,具有自己的文件系统、CPU、内存、进程空间等。 由于它们与基础架构分离,因此可以跨云和 OS 发行版本进行移植。
容器的优势:
敏捷应用程序的创建和部署:与使用 VM 镜像相比,提高了容器镜像创建的简便性和效率。
持续开发、集成和部署:通过快速简单的回滚(由于镜像不可变性),支持可靠且频繁的 容器镜像构建和部署。
关注开发与运维的分离:在构建/发布时而不是在部署时创建应用程序容器镜像, 从而将应用程序与基础架构分离。
可观察性不仅可以显示操作系统级别的信息和指标,还可以显示应用程序的运行状况和其他指标信号。
跨开发、测试和生产的环境一致性:在便携式计算机上与在云中相同地运行。
跨云和操作系统发行版本的可移植性:可在 Ubuntu、RHEL、CoreOS、本地、 Google Kubernetes Engine 和其他任何地方运行。
以应用程序为中心的管理:提高抽象级别,从在虚拟硬件上运行 OS 到使用逻辑资源在 OS 上运行应用程序。
松散耦合、分布式、弹性、解放的微服务:应用程序被分解成较小的独立部分, 并且可以动态部署和管理 - 而不是在一台大型单机上整体运行。
资源隔离:可预测的应用程序性能。
资源利用:高效率和高密度
为什么需要 Kubernetes,它能做什么?
容器是打包和运行应用程序的好方式。在生产环境中,你需要管理运行应用程序的容器,并确保不会停机。 例如,如果一个容器发生故障,则需要启动另一个容器。如果系统处理此行为,会不会更容易?
这就是 Kubernetes 来解决这些问题的方法! Kubernetes 为你提供了一个可弹性运行分布式系统的框架。 Kubernetes 会满足你的扩展要求、故障转移、部署模式等。 例如,Kubernetes 可以轻松管理系统的 Canary(金丝雀)部署。
Kubernetes 为你提供:
服务发现和负载均衡
Kubernetes 可以使用 DNS 名称或自己的 IP 地址公开容器,如果进入容器的流量很大, Kubernetes 可以负载均衡并分配网络流量,从而使部署稳定。
存储编排
Kubernetes 允许你自动挂载你选择的存储系统,例如本地存储、公共云提供商等。
自动部署和回滚
你可以使用 Kubernetes 描述已部署容器的所需状态,它可以以受控的速率将实际状态 更改为期望状态。例如,你可以自动化 Kubernetes 来为你的部署创建新容器, 删除现有容器并将它们的所有资源用于新容器。
自动完成容器计算
Kubernetes 允许你指定每个容器所需 CPU 和内存(RAM)。 当容器指定了资源请求时,Kubernetes 可以做出更好的决策来管理容器的资源。
自我修复
Kubernetes 重新启动失败的容器、替换容器、杀死不响应用户定义的运行状况检查的容器,并且在准备好服务之前不将其通告给客户端。
密钥与配置管理
Kubernetes 允许你存储和管理敏感信息,例如密码、OAuth 令牌和 ssh 密钥。 你可以在不重建容器镜像的情况下部署和更新密钥和应用程序配置,也无需在堆栈配置中暴露密钥。
二、kubernetes组件
当你部署完 Kubernetes, 即拥有了一个完整的集群。一个 Kubernetes 集群由一组被称作节点的机器组成。这些节点上运行 Kubernetes 所管理的容器化应用。集群具有至少一个工作节点。
工作节点托管作为应用负载的组件的 Pod(集群中一组正在运行的容器) 。控制平面(Control Plane是指容器编排层,它暴露 API 和接口来定义、 部署容器和管理容器的生命周期管理集群中的工作节点和 Pod) 。 为集群提供故障转移和高可用性,这些控制平面一般跨多主机运行,集群跨多个节点运行。
这张图表展示了包含所有相互关联组件的 Kubernetes 集群。
控制平面组件(Control Plane Components)
控制平面的组件对集群做出全局决策(比如调度),以及检测和响应集群事件(例如,当不满足部署的 replicas 字段时,启动新的 pod)。
控制平面组件可以在集群中的任何节点上运行。 然而,为了简单起见,设置脚本通常会在同一个计算机上启动所有控制平面组件, 并且不会在此计算机上运行用户容器。 请参阅使用 kubeadm 构建高可用性集群 中关于多 VM 控制平面设置的示例。
kube-apiserver
API 服务器是 Kubernetes 控制面的组件, 该组件公开了 Kubernetes API。 API 服务器是 Kubernetes 控制面的前端。
Kubernetes API 服务器的主要实现是 kube-apiserver。 kube-apiserver 设计上考虑了水平伸缩,也就是说,它可通过部署多个实例进行伸缩。 你可以运行 kube-apiserver 的多个实例,并在这些实例之间平衡流量。
etcd
etcd 是兼具一致性和高可用性的键值数据库(即非关系型数据库),可以作为保存 Kubernetes 所有集群数据的后台数据库。
您的 Kubernetes 集群的 etcd 数据库通常需要有个备份计划。
要了解 etcd 更深层次的信息,请参考 etcd 文档。
也可参考etcd使用入门
kube-scheduler
控制平面组件,负责监视新创建的、未指定运行节点(node)的 Pods,选择节点让 Pod 在上面运行。
调度决策考虑的因素包括单个 Pod 和 Pod 集合的资源需求、硬件/软件/策略约束、亲和性和反亲和性规范、数据位置、工作负载间的干扰和最后时限。
kube-controller-manager
在主节点上运行 控制器(控制器通过APIserver监控集群的公共状态,并致力于将当前的状态转为期望状态) 的组件。
从逻辑上讲,每个控制器都是一个单独的进程, 但是为了降低复杂性,它们都被编译到同一个可执行文件,并在一个进程中运行。
这些控制器包括:
节点控制器(Node Controller): 负责在节点出现故障时进行通知和响应
任务控制器(Job controller): 监测代表一次性任务的 Job 对象,然后创建 Pods 来运行这些任务直至完成
端点控制器(Endpoints Controller): 填充端点(Endpoints)对象(即加入 Service 与 Pod)
服务帐户和令牌控制器(Service Account & Token Controllers): 为新的命名空间创建默认帐户和 API 访问令牌
cloud-controller-manager
云控制器管理器是指嵌入特定云的控制逻辑的 控制平面组件。 云控制器管理器允许您链接集群到云提供商的应用编程接口中, 并把和该云平台交互的组件与只和您的集群交互的组件分离开。
cloud-controller-manager 仅运行特定于云平台的控制回路。 如果你在自己的环境中运行 Kubernetes,或者在本地计算机中运行学习环境, 所部署的环境中不需要云控制器管理器。
与 kube-controller-manager 类似,cloud-controller-manager 将若干逻辑上独立的 控制回路组合到同一个可执行文件中,供你以同一进程的方式运行。 你可以对其执行水平扩容(运行不止一个副本)以提升性能或者增强容错能力。
下面的控制器都包含对云平台驱动的依赖:
节点控制器(Node Controller): 用于在节点终止响应后检查云提供商以确定节点是否已被删除
路由控制器(Route Controller): 用于在底层云基础架构中设置路由
服务控制器(Service Controller): 用于创建、更新和删除云提供商负载均衡器
Node 组件
节点组件在每个节点上运行,维护运行的 Pod 并提供 Kubernetes 运行环境。
kubelet
一个在集群中每个节点(node)上运行的代理。 它保证容器(containers)都运行在 Pod 中。
kubelet 接收一组通过各类机制提供给它的 PodSpecs,确保这些 PodSpecs 中描述的容器处于运行状态且健康。 kubelet 不会管理不是由 Kubernetes 创建的容器。
kube-proxy
kube-proxy 是集群中每个节点上运行的网络代理, 实现 Kubernetes 服务(Service) 概念的一部分。
kube-proxy 维护节点上的网络规则。这些网络规则允许从集群内部或外部的网络会话与 Pod 进行网络通信。
如果操作系统提供了数据包过滤层并可用的话,kube-proxy 会通过它来实现网络规则。否则, kube-proxy 仅转发流量本身。
容器运行时(Container Runtime)
容器运行环境是负责运行容器的软件。
Kubernetes 支持多个容器运行环境: Docker、 containerd、CRI-O 以及任何实现 Kubernetes CRI (容器运行环境接口)。
docker:一种可以提供操作系统级别虚拟化(容器化)的软件技术
containerd:强调简单性、健壮性、可移植性的一种容器运行时
CRI-O :专用于kubenetes的容器运行时软件
插件(Addons)
插件使用 Kubernetes 资源(DaemonSet(确保pod的副本在集群中副本在集群中的一组节点上运行)、 Deployment(管理应用副本的api对象)等)实现集群功能。 因为这些插件提供集群级别的功能,插件中命名空间域的资源属于 kube-system 命名空间。
下面描述众多插件中的几种。有关可用插件的完整列表,请参见 插件(Addons)。
DNS
尽管其他插件都并非严格意义上的必需组件,但几乎所有 Kubernetes 集群都应该 有集群 DNS, 因为很多示例都需要 DNS 服务。
集群 DNS 是一个 DNS 服务器,和环境中的其他 DNS 服务器一起工作,它为 Kubernetes 服务提供 DNS 记录。
Kubernetes 启动的容器自动将此 DNS 服务器包含在其 DNS 搜索列表中。
Web 界面(仪表盘)
Dashboard 是 Kubernetes 集群的通用的、基于 Web 的用户界面。 它使用户可以管理集群中运行的应用程序以及集群本身并进行故障排除。
容器资源监控
容器资源监控 将关于容器的一些常见的时间序列度量值保存到一个集中的数据库中,并提供用于浏览这些数据的界面。
集群层面日志
集群层面日志 机制负责将容器的日志数据 保存到一个集中的日志存储中,该存储能够提供搜索和浏览接口。
三、kubenetes架构
Kubernetes 遵循非常传统的C/S架构,客户端通过 RESTful 接口或者直接使用 kubectl 与 Kubernetes 集群进行通信,这两者在实际上并没有太多的区别,后者也只是Kubernetes 提供的 RESTful API 进行封装并提供出来。每一个 Kubernetes 集群都由一组 Master 节点和一系列的 Worker 节点组成,其 中 Master 节点主要负责存储集群的状态并为 Kubernetes 对象分配和调度资源。
Master
它主要负责接收客户端的请求,安排容器的执行并且运行控制循环,将集群的状态向目标状态进行迁移, Master 节点内部由三个组件构成:
API Server
负责处理来自用户的请求,其主要作用就是对外提供 RESTful 的接口,包括用于查看集群状态的读请求以及 改变集群状态的写请求,也是唯一一个与 etcd 集群通信的组件。
ControllerController
管理器运行了一系列的控制器进程,这些进程会按照用户的期望状态在后台不断地调节整个集群中的对象, 当服务的状态发生了改变,控制器就会发现这个改变并且开始向目标状态迁移。
SchedulerScheduler
调度器其实为 Kubernetes 中运行的 Pod 选择部署的 Worker 节点,它会根据用户的需要选择最能满足请 求的节点来运行 Pod,它会在每次需要调度 Pod 时执行。
Node
Node 节点实现相对简单一点,主要是由 kubelet 和 kube-proxy 两部分组成: kubelet 是一个节点上的主要服务,它周期性地从 API Server 接受新的或者修改的 Pod 规范并且保证节点上的 Pod 和其中容器的正常运行,还会保证节点会向目标状态迁移,该节点仍然会向 Master 节点发送宿主机的健康状况。 kube-proxy 负责宿主机的子网管理,同时也能将服务暴露给外部,其原理就是在多个隔离的网络中把请求转发给正确的 Pod 或者容器
kubernetes 结构图
在这张系统架构图中,我们把服务分为运行在工作节点上的服务和组成集群级别控制板的服务。
Kubernetes 主要由以下几个核心组件组成:
- etcd 保存了整个集群的状态
- apiserver 提供了资源操作的唯一入口,并提供认证、授权、访问控制、API 注册和发现等 机制
- controller manager 负责维护集群的状态,比如故障检测、自动扩展、滚动更新等
- scheduler 负责资源的调度,按照预定的调度策略将 Pod 调度到相应的机器上
- kubelet 负责维护容器的生命周期,同时也负责 Volume(CVI)和网络(CNI的管理
- Container runtime 负责镜像管理以及 Pod 和容器的真正运行(CRI)
- kube-proxy 负责为 Service 提供 cluster 内部的服务发现和负载均衡
除了核心组件,还有一些推荐的组件:
1.kube-dns 负责为整个集群提供 DNS 服务
2.Ingress Controller 为服务提供外网入口
3.Heapster 提供资源监控
4.Dashboard 提供 GUIFederation 提供跨可用区的集群
5.Fluentd-elasticsearch 提供集群日志采集、存储与查询
以上是关于kubernetes(k8s)介绍的主要内容,如果未能解决你的问题,请参考以下文章