CVPR2020 论文和代码合集
Posted AI浩
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CVPR2020 论文和代码合集相关的知识,希望对你有一定的参考价值。
CVPR2020-Code
CVPR 2020 论文开源项目合集,同时欢迎各位大佬提交issue,分享CVPR 2020开源项目
【推荐阅读】
-
ECCV 2020 论文开源项目合集来了:https://github.com/amusi/ECCV2020-Code
-
关于往年CV顶会论文(如ECCV 2020、CVPR 2019、ICCV 2019)以及其他优质CV论文和大盘点,详见: https://github.com/amusi/daily-paper-computer-vision
【CVPR 2020 论文开源目录】
- CNN
- 图像分类
- 视频分类
- 目标检测
- 3D目标检测
- 视频目标检测
- 目标跟踪
- 语义分割
- 实例分割
- 全景分割
- 视频目标分割
- 超像素分割
- 交互式图像分割
- NAS
- GAN
- Re-ID
- 3D点云(分类/分割/配准/跟踪等)
- 人脸(识别/检测/重建等)
- 人体姿态估计(2D/3D)
- 人体解析
- 场景文本检测
- 场景文本识别
- 特征(点)检测和描述
- 超分辨率
- 模型压缩/剪枝
- 视频理解/行为识别
- 人群计数
- 深度估计
- 6D目标姿态估计
- 手势估计
- 显著性检测
- 去噪
- 去雨
- 去模糊
- 去雾
- 特征点检测与描述
- 视觉问答(VQA)
- 视频问答(VideoQA)
- 视觉语言导航
- 视频压缩
- 视频插帧
- 风格迁移
- 车道线检测
- "人-物"交互(HOI)检测
- 轨迹预测
- 运动预测
- 光流估计
- 图像检索
- 虚拟试衣
- HDR
- 对抗样本
- 三维重建
- 深度补全
- 语义场景补全
- 图像/视频描述
- 线框解析
- 数据集
- 其他
- 不确定中没中
CNN
Exploring Self-attention for Image Recognition
-
论文:https://hszhao.github.io/papers/cvpr20_san.pdf
-
代码:https://github.com/hszhao/SAN
Improving Convolutional Networks with Self-Calibrated Convolutions
-
主页:https://mmcheng.net/scconv/
-
论文:http://mftp.mmcheng.net/Papers/20cvprSCNet.pdf
-
代码:https://github.com/backseason/SCNet
Rethinking Depthwise Separable Convolutions: How Intra-Kernel Correlations Lead to Improved MobileNets
- 论文:https://arxiv.org/abs/2003.13549
- 代码:https://github.com/zeiss-microscopy/BSConv
图像分类
Interpretable and Accurate Fine-grained Recognition via Region Grouping
-
论文:https://arxiv.org/abs/2005.10411
-
代码:https://github.com/zxhuang1698/interpretability-by-parts
Compositional Convolutional Neural Networks: A Deep Architecture with Innate Robustness to Partial Occlusion
-
论文:https://arxiv.org/abs/2003.04490
-
代码:https://github.com/AdamKortylewski/CompositionalNets
Spatially Attentive Output Layer for Image Classification
- 论文:https://arxiv.org/abs/2004.07570
- 代码(好像被原作者删除了):https://github.com/ildoonet/spatially-attentive-output-layer
视频分类
SmallBigNet: Integrating Core and Contextual Views for Video Classification
- 论文:https://arxiv.org/abs/2006.14582
- 代码:https://github.com/xhl-video/SmallBigNet
目标检测
Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax
- 论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Li_Overcoming_Classifier_Imbalance_for_Long-Tail_Object_Detection_With_Balanced_Group_CVPR_2020_paper.pdf
- 代码:https://github.com/FishYuLi/BalancedGroupSoftmax
AugFPN: Improving Multi-scale Feature Learning for Object Detection
- 论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Guo_AugFPN_Improving_Multi-Scale_Feature_Learning_for_Object_Detection_CVPR_2020_paper.pdf
- 代码:https://github.com/Gus-Guo/AugFPN
Noise-Aware Fully Webly Supervised Object Detection
- 论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Shen_Noise-Aware_Fully_Webly_Supervised_Object_Detection_CVPR_2020_paper.html
- 代码:https://github.com/shenyunhang/NA-fWebSOD/
Learning a Unified Sample Weighting Network for Object Detection
- 论文:https://arxiv.org/abs/2006.06568
- 代码:https://github.com/caiqi/sample-weighting-network
D2Det: Towards High Quality Object Detection and Instance Segmentation
-
论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Cao_D2Det_Towards_High_Quality_Object_Detection_and_Instance_Segmentation_CVPR_2020_paper.pdf
-
代码:https://github.com/JialeCao001/D2Det
Dynamic Refinement Network for Oriented and Densely Packed Object Detection
-
论文下载链接:https://arxiv.org/abs/2005.09973
-
代码和数据集:https://github.com/Anymake/DRN_CVPR2020
Scale-Equalizing Pyramid Convolution for Object Detection
论文:https://arxiv.org/abs/2005.03101
代码:https://github.com/jshilong/SEPC
Revisiting the Sibling Head in Object Detector
-
论文:https://arxiv.org/abs/2003.07540
-
代码:https://github.com/Sense-X/TSD
Scale-equalizing Pyramid Convolution for Object Detection
- 论文:暂无
- 代码:https://github.com/jshilong/SEPC
Detection in Crowded Scenes: One Proposal, Multiple Predictions
- 论文:https://arxiv.org/abs/2003.09163
- 代码:https://github.com/megvii-model/CrowdDetection
Instance-aware, Context-focused, and Memory-efficient Weakly Supervised Object Detection
- 论文:https://arxiv.org/abs/2004.04725
- 代码:https://github.com/NVlabs/wetectron
Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection
- 论文:https://arxiv.org/abs/1912.02424
- 代码:https://github.com/sfzhang15/ATSS
BiDet: An Efficient Binarized Object Detector
- 论文:https://arxiv.org/abs/2003.03961
- 代码:https://github.com/ZiweiWangTHU/BiDet
Harmonizing Transferability and Discriminability for Adapting Object Detectors
- 论文:https://arxiv.org/abs/2003.06297
- 代码:https://github.com/chaoqichen/HTCN
CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection
- 论文:https://arxiv.org/abs/2003.09119
- 代码:https://github.com/KiveeDong/CentripetalNet
Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection
- 论文:https://arxiv.org/abs/2003.11818
- 代码:https://github.com/ggjy/HitDet.pytorch
EfficientDet: Scalable and Efficient Object Detection
- 论文:https://arxiv.org/abs/1911.09070
- 代码:https://github.com/google/automl/tree/master/efficientdet
3D目标检测
SESS: Self-Ensembling Semi-Supervised 3D Object Detection
-
论文: https://arxiv.org/abs/1912.11803
-
代码:https://github.com/Na-Z/sess
Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection
-
论文: https://arxiv.org/abs/2006.04356
-
代码:https://github.com/dleam/Associate-3Ddet
What You See is What You Get: Exploiting Visibility for 3D Object Detection
-
主页:https://www.cs.cmu.edu/~peiyunh/wysiwyg/
-
论文:https://arxiv.org/abs/1912.04986
-
代码:https://github.com/peiyunh/wysiwyg
Learning Depth-Guided Convolutions for Monocular 3D Object Detection
- 论文:https://arxiv.org/abs/1912.04799
- 代码:https://github.com/dingmyu/D4LCN
Structure Aware Single-stage 3D Object Detection from Point Cloud
-
论文:http://openaccess.thecvf.com/content_CVPR_2020/html/He_Structure_Aware_Single-Stage_3D_Object_Detection_From_Point_Cloud_CVPR_2020_paper.html
-
代码:https://github.com/skyhehe123/SA-SSD
IDA-3D: Instance-Depth-Aware 3D Object Detection from Stereo Vision for Autonomous Driving
-
论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Peng_IDA-3D_Instance-Depth-Aware_3D_Object_Detection_From_Stereo_Vision_for_Autonomous_CVPR_2020_paper.pdf
-
代码:https://github.com/swords123/IDA-3D
Train in Germany, Test in The USA: Making 3D Object Detectors Generalize
-
论文:https://arxiv.org/abs/2005.08139
-
代码:https://github.com/cxy1997/3D_adapt_auto_driving
MLCVNet: Multi-Level Context VoteNet for 3D Object Detection
- 论文:https://arxiv.org/abs/2004.05679
- 代码:https://github.com/NUAAXQ/MLCVNet
3DSSD: Point-based 3D Single Stage Object Detector
-
CVPR 2020 Oral
-
论文:https://arxiv.org/abs/2002.10187
-
代码:https://github.com/tomztyang/3DSSD
Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation
-
论文:https://arxiv.org/abs/2004.03572
-
代码:https://github.com/zju3dv/disprcn
End-to-End Pseudo-LiDAR for Image-Based 3D Object Detection
-
论文:https://arxiv.org/abs/2004.03080
-
代码:https://github.com/mileyan/pseudo-LiDAR_e2e
DSGN: Deep Stereo Geometry Network for 3D Object Detection
- 论文:https://arxiv.org/abs/2001.03398
- 代码:https://github.com/chenyilun95/DSGN
LiDAR-based Online 3D Video Object Detection with Graph-based Message Passing and Spatiotemporal Transformer Attention
- 论文:https://arxiv.org/abs/2004.01389
- 代码:https://github.com/yinjunbo/3DVID
PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
-
论文:https://arxiv.org/abs/1912.13192
-
代码:https://github.com/sshaoshuai/PV-RCNN
Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud
- 论文:https://arxiv.org/abs/2003.01251
- 代码:https://github.com/WeijingShi/Point-GNN
视频目标检测
Memory Enhanced Global-Local Aggregation for Video Object Detection
论文:https://arxiv.org/abs/2003.12063
代码:https://github.com/Scalsol/mega.pytorch
目标跟踪
SiamCAR: Siamese Fully Convolutional Classification and Regression for Visual Tracking
- 论文:https://arxiv.org/abs/1911.07241
- 代码:https://github.com/ohhhyeahhh/SiamCAR
D3S – A Discriminative Single Shot Segmentation Tracker
- 论文:https://arxiv.org/abs/1911.08862
- 代码:https://github.com/alanlukezic/d3s
ROAM: Recurrently Optimizing Tracking Model
-
论文:https://arxiv.org/abs/1907.12006
-
代码:https://github.com/skyoung/ROAM
Siam R-CNN: Visual Tracking by Re-Detection
- 主页:https://www.vision.rwth-aachen.de/page/siamrcnn
- 论文:https://arxiv.org/abs/1911.12836
- 论文2:https://www.vision.rwth-aachen.de/media/papers/192/siamrcnn.pdf
- 代码:https://github.com/VisualComputingInstitute/SiamR-CNN
Cooling-Shrinking Attack: Blinding the Tracker with Imperceptible Noises
- 论文:https://arxiv.org/abs/2003.09595
- 代码:https://github.com/MasterBin-IIAU/CSA
High-Performance Long-Term Tracking with Meta-Updater
-
论文:https://arxiv.org/abs/2004.00305
-
代码:https://github.com/Daikenan/LTMU
AutoTrack: Towards High-Performance Visual Tracking for UAV with Automatic Spatio-Temporal Regularization
-
论文:https://arxiv.org/abs/2003.12949
-
代码:https://github.com/vision4robotics/AutoTrack
Probabilistic Regression for Visual Tracking
- 论文:https://arxiv.org/abs/2003.12565
- 代码:https://github.com/visionml/pytracking
MAST: A Memory-Augmented Self-supervised Tracker
- 论文:https://arxiv.org/abs/2002.07793
- 代码:https://github.com/zlai0/MAST
Siamese Box Adaptive Network for Visual Tracking
- 论文:https://arxiv.org/abs/2003.06761
- 代码:https://github.com/hqucv/siamban
多目标跟踪
3D-ZeF: A 3D Zebrafish Tracking Benchmark Dataset
- 主页:https://vap.aau.dk/3d-zef/
- 论文:https://arxiv.org/abs/2006.08466
- 代码:https://bitbucket.org/aauvap/3d-zef/src/master/
- 数据集:https://motchallenge.net/data/3D-ZeF20
语义分割
FDA: Fourier Domain Adaptation for Semantic Segmentation
-
论文:https://arxiv.org/abs/2004.05498
-
代码:https://github.com/YanchaoYang/FDA
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation
-
论文:暂无
-
代码:https://github.com/JianqiangWan/Super-BPD
Single-Stage Semantic Segmentation from Image Labels
-
论文:https://arxiv.org/abs/2005.08104
-
代码:https://github.com/visinf/1-stage-wseg
Learning Texture Invariant Representation for Domain Adaptation of Semantic Segmentation
- 论文:https://arxiv.org/abs/2003.00867
- 代码:https://github.com/MyeongJin-Kim/Learning-Texture-Invariant-Representation
MSeg: A Composite Dataset for Multi-domain Semantic Segmentation
- 论文:http://vladlen.info/papers/MSeg.pdf
- 代码:https://github.com/mseg-dataset/mseg-api
CascadePSP: Toward Class-Agnostic and Very High-Resolution Segmentation via Global and Local Refinement
- 论文:https://arxiv.org/abs/2005.02551
- 代码:https://github.com/hkchengrex/CascadePSP
Unsupervised Intra-domain Adaptation for Semantic Segmentation through Self-Supervision
- Oral
- 论文:https://arxiv.org/abs/2004.07703
- 代码:https://github.com/feipan664/IntraDA
Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation
- 论文:https://arxiv.org/abs/2004.04581
- 代码:https://github.com/YudeWang/SEAM
Temporally Distributed Networks for Fast Video Segmentation
-
论文:https://arxiv.org/abs/2004.01800
-
代码:https://github.com/feinanshan/TDNet
Context Prior for Scene Segmentation
-
论文:https://arxiv.org/abs/2004.01547
-
代码:https://git.io/ContextPrior
Strip Pooling: Rethinking Spatial Pooling for Scene Parsing
-
论文:https://arxiv.org/abs/2003.13328
-
代码:https://github.com/Andrew-Qibin/SPNet
Cars Can’t Fly up in the Sky: Improving Urban-Scene Segmentation via Height-driven Attention Networks
- 论文:https://arxiv.org/abs/2003.05128
- 代码:https://github.com/shachoi/HANet
Learning Dynamic Routing for Semantic Segmentation
-
论文:https://arxiv.org/abs/2003.10401
-
代码:https://github.com/yanwei-li/DynamicRouting
实例分割
D2Det: Towards High Quality Object Detection and Instance Segmentation
-
论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Cao_D2Det_Towards_High_Quality_Object_Detection_and_Instance_Segmentation_CVPR_2020_paper.pdf
-
代码:https://github.com/JialeCao001/D2Det
PolarMask: Single Shot Instance Segmentation with Polar Representation
- 论文:https://arxiv.org/abs/1909.13226
- 代码:https://github.com/xieenze/PolarMask
- 解读:https://zhuanlan.zhihu.com/p/84890413
CenterMask : Real-Time Anchor-Free Instance Segmentation
- 论文:https://arxiv.org/abs/1911.06667
- 代码:https://github.com/youngwanLEE/CenterMask
BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation
- 论文:https://arxiv.org/abs/2001.00309
- 代码:https://github.com/aim-uofa/AdelaiDet
Deep Snake for Real-Time Instance Segmentation
- 论文:https://arxiv.org/abs/2001.01629
- 代码:https://github.com/zju3dv/snake
Mask Encoding for Single Shot Instance Segmentation
-
论文:https://arxiv.org/abs/2003.11712
-
代码:https://github.com/aim-uofa/AdelaiDet
全景分割
Video Panoptic Segmentation
- 论文:https://arxiv.org/abs/2006.11339
- 代码:https://github.com/mcahny/vps
- 数据集:https://www.dropbox.com/s/ecem4kq0fdkver4/cityscapes-vps-dataset-1.0.zip?dl=0
Pixel Consensus Voting for Panoptic Segmentation
- 论文:https://arxiv.org/abs/2004.01849
- 代码:还未公布
BANet: Bidirectional Aggregation Network with Occlusion Handling for Panoptic Segmentation
论文:https://arxiv.org/abs/2003.14031
代码:https://github.com/Mooonside/BANet
视频目标分割
A Transductive Approach for Video Object Segmentation
-
论文:https://arxiv.org/abs/2004.07193
-
代码:https://github.com/microsoft/transductive-vos.pytorch
State-Aware Tracker for Real-Time Video Object Segmentation
-
论文:https://arxiv.org/abs/2003.00482
-
代码:https://github.com/MegviiDetection/video_analyst
Learning Fast and Robust Target Models for Video Object Segmentation
- 论文:https://arxiv.org/abs/2003.00908
- 代码:https://github.com/andr345/frtm-vos
Learning Video Object Segmentation from Unlabeled Videos
- 论文:https://arxiv.org/abs/2003.05020
- 代码:https://github.com/carrierlxk/MuG
超像素分割
Superpixel Segmentation with Fully Convolutional Networks
- 论文:https://arxiv.org/abs/2003.12929
- 代码:https://github.com/fuy34/superpixel_fcn
交互式图像分割
Interactive Object Segmentation with Inside-Outside Guidance
- 论文下载链接:http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhang_Interactive_Object_Segmentation_With_Inside-Outside_Guidance_CVPR_2020_paper.pdf
- 代码:https://github.com/shiyinzhang/Inside-Outside-Guidance
- 数据集:https://github.com/shiyinzhang/Pixel-ImageNet
NAS
AOWS: Adaptive and optimal network width search with latency constraints
- 论文:https://arxiv.org/abs/2005.10481
- 代码:https://github.com/bermanmaxim/AOWS
Densely Connected Search Space for More Flexible Neural Architecture Search
-
论文:https://arxiv.org/abs/1906.09607
-
代码:https://github.com/JaminFong/DenseNAS
MTL-NAS: Task-Agnostic Neural Architecture Search towards General-Purpose Multi-Task Learning
-
论文:https://arxiv.org/abs/2003.14058
-
代码:https://github.com/bhpfelix/MTLNAS
FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions
-
论文下载链接:https://arxiv.org/abs/2004.05565
-
代码:https://github.com/facebookresearch/mobile-vision
Neural Architecture Search for Lightweight Non-Local Networks
- 论文:https://arxiv.org/abs/2004.01961
- 代码:https://github.com/LiYingwei/AutoNL
Rethinking Performance Estimation in Neural Architecture Search
- 论文:https://arxiv.org/abs/2005.09917
- 代码:https://github.com/zhengxiawu/rethinking_performance_estimation_in_NAS
- 解读1:https://www.zhihu.com/question/372070853/answer/1035234510
- 解读2:https://zhuanlan.zhihu.com/p/111167409
CARS: Continuous Evolution for Efficient Neural Architecture Search
- 论文:https://arxiv.org/abs/1909.04977
- 代码(即将开源):https://github.com/huawei-noah/CARS
GAN
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization
- 论文:https://arxiv.org/abs/1911.12861
- 代码:https://github.com/ZPdesu/SEAN
Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation
- 论文地址:http://openaccess.thecvf.com/content_CVPR_2020/html/Chen_Reusing_Discriminators_for_Encoding_Towards_Unsupervised_Image-to-Image_Translation_CVPR_2020_paper.html
- 代码地址:https://github.com/alpc91/NICE-GAN-pytorch
Distribution-induced Bidirectional Generative Adversarial Network for Graph Representation Learning
- 论文:https://arxiv.org/abs/1912.01899
- 代码:https://github.com/SsGood/DBGAN
PSGAN: Pose and Expression Robust Spatial-Aware GAN for Customizable Makeup Transfer
- 论文:https://arxiv.org/abs/1909.06956
- 代码:https://github.com/wtjiang98/PSGAN
Semantically Mutil-modal Image Synthesis
- 主页:http://seanseattle.github.io/SMIS
- 论文:https://arxiv.org/abs/2003.12697
- 代码:https://github.com/Seanseattle/SMIS
Unpaired Portrait Drawing Generation via Asymmetric Cycle Mapping
- 论文:https://yiranran.github.io/files/CVPR2020_Unpaired%20Portrait%20Drawing%20Generation%20via%20Asymmetric%20Cycle%20Mapping.pdf
- 代码:https://github.com/yiranran/Unpaired-Portrait-Drawing
Learning to Cartoonize Using White-box Cartoon Representations
-
论文:https://github.com/SystemErrorWang/White-box-Cartoonization/blob/master/paper/06791.pdf
-
主页:https://systemerrorwang.github.io/White-box-Cartoonization/
-
代码:https://github.com/SystemErrorWang/White-box-Cartoonization
-
解读:https://zhuanlan.zhihu.com/p/117422157
-
Demo视频:https://www.bilibili.com/video/av56708333
GAN Compression: Efficient Architectures for Interactive Conditional GANs
-
论文:https://arxiv.org/abs/2003.08936
-
代码:https://github.com/mit-han-lab/gan-compression
Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are Failing to Reproduce Spectral Distributions
- 论文:https://arxiv.org/abs/2003.01826
- 代码:https://github.com/cc-hpc-itwm/UpConv
Re-ID
High-Order Information Matters: Learning Relation and Topology for Occluded Person Re-Identification
- 论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Wang_High-Order_Information_Matters_Learning_Relation_and_Topology_for_Occluded_Person_CVPR_2020_paper.html
- 代码:https://github.com/wangguanan/HOReID
COCAS: A Large-Scale Clothes Changing Person Dataset for Re-identification
-
论文:https://arxiv.org/abs/2005.07862
-
数据集:暂无
Transferable, Controllable, and Inconspicuous Adversarial Attacks on Person Re-identification With Deep Mis-Ranking
-
论文:https://arxiv.org/abs/2004.04199
-
代码:https://github.com/whj363636/Adversarial-attack-on-Person-ReID-With-Deep-Mis-Ranking
Pose-guided Visible Part Matching for Occluded Person ReID
- 论文:https://arxiv.org/abs/2004.00230
- 代码:https://github.com/hh23333/PVPM
Weakly supervised discriminative feature learning with state information for person identification
- 论文:https://arxiv.org/abs/2002.11939
- 代码:https://github.com/KovenYu/state-information
3D点云(分类/分割/配准等)
3D点云卷积
PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling
- 论文:https://arxiv.org/abs/2003.00492
- 代码:https://github.com/yanx27/PointASNL
Global-Local Bidirectional Reasoning for Unsupervised Representation Learning of 3D Point Clouds
-
论文下载链接:https://arxiv.org/abs/2003.12971
-
代码:https://github.com/raoyongming/PointGLR
Grid-GCN for Fast and Scalable Point Cloud Learning
-
论文:https://arxiv.org/abs/1912.02984
-
代码:https://github.com/Xharlie/Grid-GCN
FPConv: Learning Local Flattening for Point Convolution
- 论文:https://arxiv.org/abs/2002.10701
- 代码:https://github.com/lyqun/FPConv
3D点云分类
PointAugment: an Auto-Augmentation Framework for Point Cloud Classification
- 论文:https://arxiv.org/abs/2002.10876
- 代码(即将开源): https://github.com/liruihui/PointAugment/
3D点云语义分割
RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds
-
论文:https://arxiv.org/abs/1911.11236
-
代码:https://github.com/QingyongHu/RandLA-Net
-
解读:https://zhuanlan.zhihu.com/p/105433460
Weakly Supervised Semantic Point Cloud Segmentation:Towards 10X Fewer Labels
-
论文:https://arxiv.org/abs/2004.04091
-
代码:https://github.com/alex-xun-xu/WeakSupPointCloudSeg
PolarNet: An Improved Grid Representation for Online LiDAR Point Clouds Semantic Segmentation
- 论文:https://arxiv.org/abs/2003.14032
- 代码:https://github.com/edwardzhou130/PolarSeg
Learning to Segment 3D Point Clouds in 2D Image Space
-
论文:https://arxiv.org/abs/2003.05593
-
代码:https://github.com/WPI-VISLab/Learning-to-Segment-3D-Point-Clouds-in-2D-Image-Space
3D点云实例分割
PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation
- 论文:https://arxiv.org/abs/2004.01658
- 代码:https://github.com/Jia-Research-Lab/PointGroup
3D点云配准
Feature-metric Registration: A Fast Semi-supervised Approach for Robust Point Cloud Registration without Correspondences
- 论文:https://arxiv.org/abs/2005.01014
- 代码:https://github.com/XiaoshuiHuang/fmr
D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features
- 论文:https://arxiv.org/abs/2003.03164
- 代码:https://github.com/XuyangBai/D3Feat
RPM-Net: Robust Point Matching using Learned Features
- 论文:https://arxiv.org/abs/2003.13479
- 代码:https://github.com/yewzijian/RPMNet
3D点云补全
Cascaded Refinement Network for Point Cloud Completion
- 论文:https://arxiv.org/abs/2004.03327
- 代码:https://github.com/xiaogangw/cascaded-point-completion
3D点云目标跟踪
P2B: Point-to-Box Network for 3D Object Tracking in Point Clouds
- 论文:https://arxiv.org/abs/2005.13888
- 代码:https://github.com/HaozheQi/P2B
其他
An Efficient PointLSTM for Point Clouds Based Gesture Recognition
- 论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Min_An_Efficient_PointLSTM_for_Point_Clouds_Based_Gesture_Recognition_CVPR_2020_paper.html
- 代码:https://github.com/Blueprintf/pointlstm-gesture-recognition-pytorch
人脸
人脸识别
CurricularFace: Adaptive Curriculum Learning Loss for Deep Face Recognition
-
论文:https://arxiv.org/abs/2004.00288
-
代码:https://github.com/HuangYG123/CurricularFace
Learning Meta Face Recognition in Unseen Domains
- 论文:https://arxiv.org/abs/2003.07733
- 代码:https://github.com/cleardusk/MFR
- 解读:https://mp.weixin.qq.com/s/YZoEnjpnlvb90qSI3xdJqQ
人脸检测
人脸活体检测
Searching Central Difference Convolutional Networks for Face Anti-Spoofing
-
论文:https://arxiv.org/abs/2003.04092
-
代码:https://github.com/ZitongYu/CDCN
人脸表情识别
Suppressing Uncertainties for Large-Scale Facial Expression Recognition
-
论文:https://arxiv.org/abs/2002.10392
-
代码(即将开源):https://github.com/kaiwang960112/Self-Cure-Network
人脸转正
Rotate-and-Render: Unsupervised Photorealistic Face Rotation from Single-View Images
- 论文:https://arxiv.org/abs/2003.08124
- 代码:https://github.com/Hangz-nju-cuhk/Rotate-and-Render
人脸3D重建
AvatarMe: Realistically Renderable 3D Facial Reconstruction "in-the-wild"
- 论文:https://arxiv.org/abs/2003.13845
- 数据集:https://github.com/lattas/AvatarMe
FaceScape: a Large-scale High Quality 3D Face Dataset and Detailed Riggable 3D Face Prediction
- 论文:https://arxiv.org/abs/2003.13989
- 代码:https://github.com/zhuhao-nju/facescape
人体姿态估计(2D/3D)
2D人体姿态估计
TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting
-
主页:https://yzhq97.github.io/transmomo/
-
论文:https://arxiv.org/abs/2003.14401
-
代码:https://github.com/yzhq97/transmomo.pytorch
HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation
- 论文:https://arxiv.org/abs/1908.10357
- 代码:https://github.com/HRNet/HigherHRNet-Human-Pose-Estimation
The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation
- 论文:https://arxiv.org/abs/1911.07524
- 代码:https://github.com/HuangJunJie2017/UDP-Pose
- 解读:https://zhuanlan.zhihu.com/p/92525039
Distribution-Aware Coordinate Representation for Human Pose Estimation
-
主页:https://ilovepose.github.io/coco/
-
论文:https://arxiv.org/abs/1910.06278
-
代码:https://github.com/ilovepose/DarkPose
3D人体姿态估计
Cascaded Deep Monocular 3D Human Pose Estimation With Evolutionary Training Data
- 论文:https://arxiv.org/abs/2006.07778
- 代码:https://github.com/Nicholasli1995/EvoSkeleton
Fusing Wearable IMUs with Multi-View Images for Human Pose Estimation: A Geometric Approach
-
主页:https://www.zhe-zhang.com/cvpr2020
-
论文:https://arxiv.org/abs/2003.11163
-
代码:https://github.com/CHUNYUWANG/imu-human-pose-pytorch
Bodies at Rest: 3D Human Pose and Shape Estimation from a Pressure Image using Synthetic Data
-
论文下载链接:https://arxiv.org/abs/2004.01166
-
代码:https://github.com/Healthcare-Robotics/bodies-at-rest
-
数据集:https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/KOA4ML
Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image Synthesis
- 主页:http://val.cds.iisc.ac.in/pgp-human/
- 论文:https://arxiv.org/abs/2004.04400
Compressed Volumetric Heatmaps for Multi-Person 3D Pose Estimation
- 论文:https://arxiv.org/abs/2004.00329
- 代码:https://github.com/fabbrimatteo/LoCO
VIBE: Video Inference for Human Body Pose and Shape Estimation
- 论文:https://arxiv.org/abs/1912.05656
- 代码:https://github.com/mkocabas/VIBE
Back to the Future: Joint Aware Temporal Deep Learning 3D Human Pose Estimation
- 论文:https://arxiv.org/abs/2002.11251
- 代码:https://github.com/vnmr/JointVideoPose3D
Cross-View Tracking for Multi-Human 3D Pose Estimation at over 100 FPS
- 论文:https://arxiv.org/abs/2003.03972
- 数据集:暂无
人体解析
Correlating Edge, Pose with Parsing
-
论文:https://arxiv.org/abs/2005.01431
-
代码:https://github.com/ziwei-zh/CorrPM
场景文本检测
STEFANN: Scene Text Editor using Font Adaptive Neural Network
-
主页:https://prasunroy.github.io/stefann/
-
论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Roy_STEFANN_Scene_Text_Editor_Using_Font_Adaptive_Neural_Network_CVPR_2020_paper.html
-
代码:https://github.com/prasunroy/stefann
-
数据集:https://drive.google.com/open?id=1sEDiX_jORh2X-HSzUnjIyZr-G9LJIw1k
ContourNet: Taking a Further Step Toward Accurate Arbitrary-Shaped Scene Text Detection
- 论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Wang_ContourNet_Taking_a_Further_Step_Toward_Accurate_Arbitrary-Shaped_Scene_Text_CVPR_2020_paper.pdf
- 代码:https://github.com/wangyuxin87/ContourNet
UnrealText: Synthesizing Realistic Scene Text Images from the Unreal World
- 论文:https://arxiv.org/abs/2003.10608
- 代码和数据集:https://github.com/Jyouhou/UnrealText/
ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network
- 论文:https://arxiv.org/abs/2002.10200
- 代码(即将开源):https://github.com/Yuliang-Liu/bezier_curve_text_spotting
- 代码(即将开源):https://github.com/aim-uofa/adet
Deep Relational Reasoning Graph Network for Arbitrary Shape Text Detection
-
论文:https://arxiv.org/abs/2003.07493
-
代码:https://github.com/GXYM/DRRG
场景文本识别
SEED: Semantics Enhanced Encoder-Decoder Framework for Scene Text Recognition
- 论文:https://arxiv.org/abs/2005.10977
- 代码:https://github.com/Pay20Y/SEED
UnrealText: Synthesizing Realistic Scene Text Images from the Unreal World
- 论文:https://arxiv.org/abs/2003.10608
- 代码和数据集:https://github.com/Jyouhou/UnrealText/
ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network
- 论文:https://arxiv.org/abs/2002.10200
- 代码(即将开源):https://github.com/aim-uofa/adet
Learn to Augment: Joint Data Augmentation and Network Optimization for Text Recognition
-
论文:https://arxiv.org/abs/2003.06606
-
代码:https://github.com/Canjie-Luo/Text-Image-Augmentation
特征(点)检测和描述
SuperGlue: Learning Feature Matching with Graph Neural Networks
- 论文:https://arxiv.org/abs/1911.11763
- 代码:https://github.com/magicleap/SuperGluePretrainedNetwork
超分辨率
图像超分辨率
Closed-Loop Matters: Dual Regression Networks for Single Image Super-Resolution
- 论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Guo_Closed-Loop_Matters_Dual_Regression_Networks_for_Single_Image_Super-Resolution_CVPR_2020_paper.html
- 代码:https://github.com/guoyongcs/DRN
Learning Texture Transformer Network for Image Super-Resolution
-
论文:https://arxiv.org/abs/2006.04139
-
代码:https://github.com/FuzhiYang/TTSR
Image Super-Resolution with Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining
- 论文:https://arxiv.org/abs/2006.01424
- 代码:https://github.com/SHI-Labs/Cross-Scale-Non-Local-Attention
Structure-Preserving Super Resolution with Gradient Guidance
-
论文:https://arxiv.org/abs/2003.13081
-
代码:https://github.com/Maclory/SPSR
Rethinking Data Augmentation for Image Super-resolution: A Comprehensive Analysis and a New Strategy
论文:https://arxiv.org/abs/2004.00448
代码:https://github.com/clovaai/cutblur
视频超分辨率
TDAN: Temporally-Deformable Alignment Network for Video Super-Resolution
- 论文:https://arxiv.org/abs/1812.02898
- 代码:https://github.com/YapengTian/TDAN-VSR-CVPR-2020
Space-Time-Aware Multi-Resolution Video Enhancement
- 主页:https://alterzero.github.io/projects/STAR.html
- 论文:http://arxiv.org/abs/2003.13170
- 代码:https://github.com/alterzero/STARnet
Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video Super-Resolution
- 论文:https://arxiv.org/abs/2002.11616
- 代码:https://github.com/Mukosame/Zooming-Slow-Mo-CVPR-2020
模型压缩/剪枝
DMCP: Differentiable Markov Channel Pruning for Neural Networks
- 论文:https://arxiv.org/abs/2005.03354
- 代码:https://github.com/zx55/dmcp
Forward and Backward Information Retention for Accurate Binary Neural Networks
-
论文:https://arxiv.org/abs/1909.10788
-
代码:https://github.com/htqin/IR-Net
Towards Efficient Model Compression via Learned Global Ranking
- 论文:https://arxiv.org/abs/1904.12368
- 代码:https://github.com/cmu-enyac/LeGR
HRank: Filter Pruning using High-Rank Feature Map
- 论文:http://arxiv.org/abs/2002.10179
- 代码:https://github.com/lmbxmu/HRank
GAN Compression: Efficient Architectures for Interactive Conditional GANs
-
论文:https://arxiv.org/abs/2003.08936
-
代码:https://github.com/mit-han-lab/gan-compression
Group Sparsity: The Hinge Between Filter Pruning and Decomposition for Network Compression
-
论文:https://arxiv.org/abs/2003.08935
-
代码:https://github.com/ofsoundof/group_sparsity
视频理解/行为识别
Oops! Predicting Unintentional Action in Video
-
主页:https://oops.cs.columbia.edu/
-
论文:https://arxiv.org/abs/1911.11206
-
代码:https://github.com/cvlab-columbia/oops
-
数据集:https://oops.cs.columbia.edu/data
PREDICT & CLUSTER: Unsupervised Skeleton Based Action Recognition
- 论文:https://arxiv.org/abs/1911.12409
- 代码:https://github.com/shlizee/Predict-Cluster
Intra- and Inter-Action Understanding via Temporal Action Parsing
- 论文:https://arxiv.org/abs/2005.10229
- 主页和数据集:https://sdolivia.github.io/TAPOS/
3DV: 3D Dynamic Voxel for Action Recognition in Depth Video
- 论文:https://arxiv.org/abs/2005.05501
- 代码:https://github.com/3huo/3DV-Action
FineGym: A Hierarchical Video Dataset for Fine-grained Action Understanding
- 主页:https://sdolivia.github.io/FineGym/
- 论文:https://arxiv.org/abs/2004.06704
TEA: Temporal Excitation and Aggregation for Action Recognition
-
论文:https://arxiv.org/abs/2004.01398
-
代码:https://github.com/Phoenix1327/tea-action-recognition
X3D: Expanding Architectures for Efficient Video Recognition
-
论文:https://arxiv.org/abs/2004.04730
-
代码:https://github.com/facebookresearch/SlowFast
Temporal Pyramid Network for Action Recognition
-
主页:https://decisionforce.github.io/TPN
-
论文:https://arxiv.org/abs/2004.03548
-
代码:https://github.com/decisionforce/TPN
基于骨架的动作识别
Disentangling and Unifying Graph Convolutions for Skeleton-Based Action Recognition
- 论文:https://arxiv.org/abs/2003.14111
- 代码:https://github.com/kenziyuliu/ms-g3d
人群计数
深度估计
BiFuse: Monocular 360◦ Depth Estimation via Bi-Projection Fusion
- 论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Wang_BiFuse_Monocular_360_Depth_Estimation_via_Bi-Projection_Fusion_CVPR_2020_paper.pdf
- 代码:https://github.com/Yeh-yu-hsuan/BiFuse
Focus on defocus: bridging the synthetic to real domain gap for depth estimation
- 论文:https://arxiv.org/abs/2005.09623
- 代码:https://github.com/dvl-tum/defocus-net
Bi3D: Stereo Depth Estimation via Binary Classifications
-
论文:https://arxiv.org/abs/2005.07274
-
代码:https://github.com/NVlabs/Bi3D
AANet: Adaptive Aggregation Network for Efficient Stereo Matching
- 论文:https://arxiv.org/abs/2004.09548
- 代码:https://github.com/haofeixu/aanet
Towards Better Generalization: Joint Depth-Pose Learning without PoseNet
-
论文:https://github.com/B1ueber2y/TrianFlow
-
代码:https://github.com/B1ueber2y/TrianFlow
单目深度估计
On the uncertainty of self-supervised monocular depth estimation
- 论文:https://arxiv.org/abs/2005.06209
- 代码:https://github.com/mattpoggi/mono-uncertainty
3D Packing for Self-Supervised Monocular Depth Estimation
- 论文:https://arxiv.org/abs/1905.02693
- 代码:https://github.com/TRI-ML/packnet-sfm
- Demo视频:https://www.bilibili.com/video/av70562892/
Domain Decluttering: Simplifying Images to Mitigate Synthetic-Real Domain Shift and Improve Depth Estimation
- 论文:https://arxiv.org/abs/2002.12114
- 代码:https://github.com/yzhao520/ARC
6D目标姿态估计
PVN3D: A Deep Point-wise 3D Keypoints Voting Network for 6DoF Pose Estimation
- 论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/He_PVN3D_A_Deep_Point-Wise_3D_Keypoints_Voting_Network_for_6DoF_CVPR_2020_paper.pdf
- 代码:https://github.com/ethnhe/PVN3D
MoreFusion: Multi-object Reasoning for 6D Pose Estimation from Volumetric Fusion
- 论文:https://arxiv.org/abs/2004.04336
- 代码:https://github.com/wkentaro/morefusion
EPOS: Estimating 6D Pose of Objects with Symmetries
主页:http://cmp.felk.cvut.cz/epos
论文:https://arxiv.org/abs/2004.00605
G2L-Net: Global to Local Network for Real-time 6D Pose Estimation with Embedding Vector Features
-
论文:https://arxiv.org/abs/2003.11089
-
代码:https://github.com/DC1991/G2L_Net
手势估计
HOPE-Net: A Graph-based Model for Hand-Object Pose Estimation
-
论文:https://arxiv.org/abs/2004.00060
-
主页:http://vision.sice.indiana.edu/projects/hopenet
Monocular Real-time Hand Shape and Motion Capture using Multi-modal Data
-
论文:https://arxiv.org/abs/2003.09572
-
代码:https://github.com/CalciferZh/minimal-hand
显著性检测
JL-DCF: Joint Learning and Densely-Cooperative Fusion Framework for RGB-D Salient Object Detection
-
论文:https://arxiv.org/abs/2004.08515
-
代码:https://github.com/kerenfu/JLDCF/
UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional Variational Autoencoders
-
主页:http://dpfan.net/d3netbenchmark/
-
论文:https://arxiv.org/abs/2004.05763
-
代码:https://github.com/JingZhang617/UCNet
去噪
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising
-
论文:https://arxiv.org/abs/2003.12751
-
代码:https://github.com/Vandermode/NoiseModel
CycleISP: Real Image Restoration via Improved Data Synthesis
-
论文:https://arxiv.org/abs/2003.07761
-
代码:https://github.com/swz30/CycleISP
去雨
Multi-Scale Progressive Fusion Network for Single Image Deraining
- 论文:https://arxiv.org/abs/2003.10985
- 代码:https://github.com/kuihua/MSPFN
Detail-recovery Image Deraining via Context Aggregation Networks
- 论文:https://openaccess.thecvf.com/content_CVPR_2020/html/Deng_Detail-recovery_Image_Deraining_via_Context_Aggregation_Networks_CVPR_2020_paper.html
- 代码:https://github.com/Dengsgithub/DRD-Net
去模糊
视频去模糊
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior
- 主页:https://csbhr.github.io/projects/cdvd-tsp/index.html
- 论文:https://arxiv.org/abs/2004.02501
- 代码:https://github.com/csbhr/CDVD-TSP
去雾
Domain Adaptation for Image Dehazing
-
论文:https://arxiv.org/abs/2005.04668
-
代码:https://github.com/HUSTSYJ/DA_dahazing
Multi-Scale Boosted Dehazing Network with Dense Feature Fusion
-
论文:https://arxiv.org/abs/2004.13388
-
代码:https://github.com/BookerDeWitt/MSBDN-DFF
特征点检测与描述
ASLFeat: Learning Local Features of Accurate Shape and Localization
-
论文:https://arxiv.org/abs/2003.10071
-
代码:https://github.com/lzx551402/aslfeat
视觉问答(VQA)
VC R-CNN:Visual Commonsense R-CNN
- 论文:https://arxiv.org/abs/2002.12204
- 代码:https://github.com/Wangt-CN/VC-R-CNN
视频问答(VideoQA)
Hierarchical Conditional Relation Networks for Video Question Answering
- 论文:https://arxiv.org/abs/2002.10698
- 代码:https://github.com/thaolmk54/hcrn-videoqa
视觉语言导航
Towards Learning a Generic Agent for Vision-and-Language Navigation via Pre-training
- 论文:https://arxiv.org/abs/2002.10638
- 代码(即将开源):https://github.com/weituo12321/PREVALENT
视频压缩
Learning for Video Compression with Hierarchical Quality and Recurrent Enhancement
- 论文:https://arxiv.org/abs/2003.01966
- 代码:https://github.com/RenYang-home/HLVC
视频插帧
AdaCoF: Adaptive Collaboration of Flows for Video Frame Interpolation
- 论文:https://arxiv.org/abs/1907.10244
- 代码:https://github.com/HyeongminLEE/AdaCoF-pytorch
FeatureFlow: Robust Video Interpolation via Structure-to-Texture Generation
-
论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Gui_FeatureFlow_Robust_Video_Interpolation_via_Structure-to-Texture_Generation_CVPR_2020_paper.html
-
代码:https://github.com/CM-BF/FeatureFlow
Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video Super-Resolution
- 论文:https://arxiv.org/abs/2002.11616
- 代码:https://github.com/Mukosame/Zooming-Slow-Mo-CVPR-2020
Space-Time-Aware Multi-Resolution Video Enhancement
- 主页:https://alterzero.github.io/projects/STAR.html
- 论文:http://arxiv.org/abs/2003.13170
- 代码:https://github.com/alterzero/STARnet
Scene-Adaptive Video Frame Interpolation via Meta-Learning
- 论文:https://arxiv.org/abs/2004.00779
- 代码:https://github.com/myungsub/meta-interpolation
Softmax Splatting for Video Frame Interpolation
- 主页:http://sniklaus.com/papers/softsplat
- 论文:https://arxiv.org/abs/2003.05534
- 代码:https://github.com/sniklaus/softmax-splatting
风格迁移
Diversified Arbitrary Style Transfer via Deep Feature Perturbation
- 论文:https://arxiv.org/abs/1909.08223
- 代码:https://github.com/EndyWon/Deep-Feature-Perturbation
Collaborative Distillation for Ultra-Resolution Universal Style Transfer
-
论文:https://arxiv.org/abs/2003.08436
-
代码:https://github.com/mingsun-tse/collaborative-distillation
车道线检测
Inter-Region Affinity Distillation for Road Marking Segmentation
- 论文:https://arxiv.org/abs/2004.05304
- 代码:https://github.com/cardwing/Codes-for-IntRA-KD
"人-物"交互(HOT)检测
PPDM: Parallel Point Detection and Matching for Real-time Human-Object Interaction Detection
- 论文:https://arxiv.org/abs/1912.12898
- 代码:https://github.com/YueLiao/PPDM
Detailed 2D-3D Joint Representation for Human-Object Interaction
-
论文:https://arxiv.org/abs/2004.08154
-
代码:https://github.com/DirtyHarryLYL/DJ-RN
Cascaded Human-Object Interaction Recognition
-
论文:https://arxiv.org/abs/2003.04262
-
代码:https://github.com/tfzhou/C-HOI
VSGNet: Spatial Attention Network for Detecting Human Object Interactions Using Graph Convolutions
- 论文:https://arxiv.org/abs/2003.05541
- 代码:https://github.com/ASMIftekhar/VSGNet
轨迹预测
The Garden of Forking Paths: Towards Multi-Future Trajectory Prediction
- 论文:https://arxiv.org/abs/1912.06445
- 代码:https://github.com/JunweiLiang/Multiverse
- 数据集:https://next.cs.cmu.edu/multiverse/
Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction
- 论文:https://arxiv.org/abs/2002.11927
- 代码:https://github.com/abduallahmohamed/Social-STGCNN
运动预测
Collaborative Motion Prediction via Neural Motion Message Passing
- 论文:https://arxiv.org/abs/2003.06594
- 代码:https://github.com/PhyllisH/NMMP
MotionNet: Joint Perception and Motion Prediction for Autonomous Driving Based on Bird’s Eye View Maps
-
论文:https://arxiv.org/abs/2003.06754
-
代码:https://github.com/pxiangwu/MotionNet
光流估计
Learning by Analogy: Reliable Supervision from Transformations for Unsupervised Optical Flow Estimation
- 论文:https://arxiv.org/abs/2003.13045
- 代码:https://github.com/lliuz/ARFlow
图像检索
Evade Deep Image Retrieval by Stashing Private Images in the Hash Space
- 论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Xiao_Evade_Deep_Image_Retrieval_by_Stashing_Private_Images_in_the_CVPR_2020_paper.html
- 代码:https://github.com/sugarruy/hashstash
虚拟试衣
Towards Photo-Realistic Virtual Try-On by Adaptively Generating↔Preserving Image Content
- 论文:https://arxiv.org/abs/2003.05863
- 代码:https://github.com/switchablenorms/DeepFashion_Try_On
HDR
Single-Image HDR Reconstruction by Learning to Reverse the Camera Pipeline
-
主页:https://www.cmlab.csie.ntu.edu.tw/~yulunliu/SingleHDR
-
论文下载链接:https://www.cmlab.csie.ntu.edu.tw/~yulunliu/SingleHDR_/00942.pdf
-
代码:https://github.com/alex04072000/SingleHDR
对抗样本
Enhancing Cross-Task Black-Box Transferability of Adversarial Examples With Dispersion Reduction
- 论文:https://openaccess.thecvf.com/content_CVPR_2020/papers/Lu_Enhancing_Cross-Task_Black-Box_Transferability_of_Adversarial_Examples_With_Dispersion_Reduction_CVPR_2020_paper.pdf
- 代码:https://github.com/erbloo/dr_cvpr20
Towards Large yet Imperceptible Adversarial Image Perturbations with Perceptual Color Distance
- 论文:https://arxiv.org/abs/1911.02466
- 代码:https://github.com/ZhengyuZhao/PerC-Adversarial
三维重建
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild
- CVPR 2020 Best Paper
- 主页:https://elliottwu.com/projects/unsup3d/
- 论文:https://arxiv.org/abs/1911.11130
- 代码:https://github.com/elliottwu/unsup3d
Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization
-
主页:https://shunsukesaito.github.io/PIFuHD/
-
论文:https://arxiv.org/abs/2004.00452
-
代码:https://github.com/facebookresearch/pifuhd
-
论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Patel_TailorNet_Predicting_Clothing_in_3D_as_a_Function_of_Human_CVPR_2020_paper.pdf
-
代码:https://github.com/chaitanya100100/TailorNet
-
数据集:https://github.com/zycliao/TailorNet_dataset
Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion
-
论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Chibane_Implicit_Functions_in_Feature_Space_for_3D_Shape_Reconstruction_and_CVPR_2020_paper.pdf
-
代码:https://github.com/jchibane/if-net
-
论文:http://openaccess.thecvf.com/conte
以上是关于CVPR2020 论文和代码合集的主要内容,如果未能解决你的问题,请参考以下文章
CVPR-2020 AAAI2020 CVPR-2019 NIPS-2019 ICCV-2019 IJCAI-2019 论文超级大合集下载,整理好累,拿走不谢
CVPR-2020 AAAI2020 CVPR-2019 NIPS-2019 ICCV-2019 IJCAI-2019 论文超级大合集下载,整理好累,拿走不谢
CVPR-2020 AAAI2020 CVPR-2019 NIPS-2019 ICCV-2019 IJCAI-2019 论文超级大合集下载,整理好累,拿走不谢