CVPR 2021 论文和开源项目合集

Posted AI浩

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CVPR 2021 论文和开源项目合集相关的知识,希望对你有一定的参考价值。

CVPR 2021 论文和开源项目合集(Papers with Code)

地址:https://github.com/amusi/CVPR2021-Papers-with-Code

Best Paper

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields

  • Homepage: https://m-niemeyer.github.io/project-pages/giraffe/index.html

  • Paper(Oral): https://arxiv.org/abs/2011.12100

  • Code: https://github.com/autonomousvision/giraffe

  • Demo: http://www.youtube.com/watch?v=fIaDXC-qRSg&vq=hd1080&autoplay=1

Backbone

HR-NAS: Searching Efficient High-Resolution Neural Architectures with Lightweight Transformers

  • Paper(Oral): https://arxiv.org/abs/2106.06560

  • Code: https://github.com/dingmyu/HR-NAS

BCNet: Searching for Network Width with Bilaterally Coupled Network

  • Paper: https://arxiv.org/abs/2105.10533
  • Code: None

Decoupled Dynamic Filter Networks

  • Homepage: https://thefoxofsky.github.io/project_pages/ddf
  • Paper: https://arxiv.org/abs/2104.14107
  • Code: https://github.com/thefoxofsky/DDF

Lite-HRNet: A Lightweight High-Resolution Network

  • Paper: https://arxiv.org/abs/2104.06403
  • https://github.com/HRNet/Lite-HRNet

CondenseNet V2: Sparse Feature Reactivation for Deep Networks

  • Paper: https://arxiv.org/abs/2104.04382

  • Code: https://github.com/jianghaojun/CondenseNetV2

Diverse Branch Block: Building a Convolution as an Inception-like Unit

  • Paper: https://arxiv.org/abs/2103.13425

  • Code: https://github.com/DingXiaoH/DiverseBranchBlock

Scaling Local Self-Attention For Parameter Efficient Visual Backbones

  • Paper(Oral): https://arxiv.org/abs/2103.12731

  • Code: None

ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network

  • Paper: https://arxiv.org/abs/2007.00992
  • Code: https://github.com/clovaai/rexnet

Involution: Inverting the Inherence of Convolution for Visual Recognition

  • Paper: https://github.com/d-li14/involution
  • Code: https://arxiv.org/abs/2103.06255

Coordinate Attention for Efficient Mobile Network Design

  • Paper: https://arxiv.org/abs/2103.02907
  • Code: https://github.com/Andrew-Qibin/CoordAttention

Inception Convolution with Efficient Dilation Search

  • Paper: https://arxiv.org/abs/2012.13587
  • Code: https://github.com/yifan123/IC-Conv

RepVGG: Making VGG-style ConvNets Great Again

  • Paper: https://arxiv.org/abs/2101.03697
  • Code: https://github.com/DingXiaoH/RepVGG

NAS

HR-NAS: Searching Efficient High-Resolution Neural Architectures with Lightweight Transformers

  • Paper(Oral): https://arxiv.org/abs/2106.06560

  • Code: https://github.com/dingmyu/HR-NAS

BCNet: Searching for Network Width with Bilaterally Coupled Network

  • Paper: https://arxiv.org/abs/2105.10533
  • Code: None

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search

  • Paper: ttps://arxiv.org/abs/2105.10154
  • Code: None

Combined Depth Space based Architecture Search For Person Re-identification

  • Paper: https://arxiv.org/abs/2104.04163
  • Code: None

DiNTS: Differentiable Neural Network Topology Search for 3D Medical Image Segmentation

  • Paper(Oral): https://arxiv.org/abs/2103.15954
  • Code: None

HR-NAS: Searching Efficient High-Resolution Neural Architectures with Transformers

  • Paper(Oral): None
  • Code: https://github.com/dingmyu/HR-NAS

Neural Architecture Search with Random Labels

  • Paper: https://arxiv.org/abs/2101.11834
  • Code: None

Towards Improving the Consistency, Efficiency, and Flexibility of Differentiable Neural Architecture Search

  • Paper: https://arxiv.org/abs/2101.11342
  • Code: None

Joint-DetNAS: Upgrade Your Detector with NAS, Pruning and Dynamic Distillation

  • Paper: https://arxiv.org/abs/2105.12971
  • Code: None

Prioritized Architecture Sampling with Monto-Carlo Tree Search

  • Paper: https://arxiv.org/abs/2103.11922
  • Code: https://github.com/xiusu/NAS-Bench-Macro

Contrastive Neural Architecture Search with Neural Architecture Comparators

  • Paper: https://arxiv.org/abs/2103.05471
  • Code: https://github.com/chenyaofo/CTNAS

AttentiveNAS: Improving Neural Architecture Search via Attentive

  • Paper: https://arxiv.org/abs/2011.09011
  • Code: None

ReNAS: Relativistic Evaluation of Neural Architecture Search

  • Paper: https://arxiv.org/abs/1910.01523
  • Code: None

HourNAS: Extremely Fast Neural Architecture

  • Paper: https://arxiv.org/abs/2005.14446
  • Code: None

Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator

  • Paper: https://arxiv.org/abs/2103.07289
  • Code: https://github.com/eric8607242/SGNAS

OPANAS: One-Shot Path Aggregation Network Architecture Search for Object Detection

  • Paper: https://arxiv.org/abs/2103.04507
  • Code: https://github.com/VDIGPKU/OPANAS

Inception Convolution with Efficient Dilation Search

  • Paper: https://arxiv.org/abs/2012.13587
  • Code: None

GAN

High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network

  • Paper: https://arxiv.org/abs/2105.09188
  • Code: https://github.com/csjliang/LPTN
  • Dataset: https://github.com/csjliang/LPTN

DG-Font: Deformable Generative Networks for Unsupervised Font Generation

  • Paper: https://arxiv.org/abs/2104.03064

  • Code: https://github.com/ecnuycxie/DG-Font

PD-GAN: Probabilistic Diverse GAN for Image Inpainting

  • Paper: https://arxiv.org/abs/2105.02201
  • Code: https://github.com/KumapowerLIU/PD-GAN

StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing

  • Paper: https://arxiv.org/abs/2104.14754
  • Code: https://github.com/naver-ai/StyleMapGAN
  • Demo Video: https://youtu.be/qCapNyRA_Ng

Drafting and Revision: Laplacian Pyramid Network for Fast High-Quality Artistic Style Transfer

  • Paper: https://arxiv.org/abs/2104.05376
  • Code: https://github.com/PaddlePaddle/PaddleGAN/

Regularizing Generative Adversarial Networks under Limited Data

  • Homepage: https://hytseng0509.github.io/lecam-gan/
  • Paper: https://faculty.ucmerced.edu/mhyang/papers/cvpr2021_gan_limited_data.pdf
  • Code: https://github.com/google/lecam-gan

Towards Real-World Blind Face Restoration with Generative Facial Prior

  • Paper: https://arxiv.org/abs/2101.04061
  • Code: None

TediGAN: Text-Guided Diverse Image Generation and Manipulation

  • Homepage: https://xiaweihao.com/projects/tedigan/

  • Paper: https://arxiv.org/abs/2012.03308

  • Code: https://github.com/weihaox/TediGAN

Generative Hierarchical Features from Synthesizing Image

  • Homepage: https://genforce.github.io/ghfeat/

  • Paper(Oral): https://arxiv.org/abs/2007.10379

  • Code: https://github.com/genforce/ghfeat

Teachers Do More Than Teach: Compressing Image-to-Image Models

  • Paper: https://arxiv.org/abs/2103.03467
  • Code: https://github.com/snap-research/CAT

HistoGAN: Controlling Colors of GAN-Generated and Real Images via Color Histograms

  • Paper: https://arxiv.org/abs/2011.11731
  • Code: https://github.com/mahmoudnafifi/HistoGAN

pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

  • Homepage: https://marcoamonteiro.github.io/pi-GAN-website/

  • Paper(Oral): https://arxiv.org/abs/2012.00926

  • Code: None

DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network

  • Paper: https://arxiv.org/abs/2103.07893
  • Code: None

Diverse Semantic Image Synthesis via Probability Distribution Modeling

  • Paper: https://arxiv.org/abs/2103.06878
  • Code: https://github.com/tzt101/INADE.git

LOHO: Latent Optimization of Hairstyles via Orthogonalization

  • Paper: https://arxiv.org/abs/2103.03891
  • Code: None

PISE: Person Image Synthesis and Editing with Decoupled GAN

  • Paper: https://arxiv.org/abs/2103.04023
  • Code: https://github.com/Zhangjinso/PISE

DeFLOCNet: Deep Image Editing via Flexible Low-level Controls

  • Paper: http://raywzy.com/
  • Code: http://raywzy.com/

PD-GAN: Probabilistic Diverse GAN for Image Inpainting

  • Paper: http://raywzy.com/
  • Code: http://raywzy.com/

Efficient Conditional GAN Transfer with Knowledge Propagation across Classes

  • Paper: https://www.researchgate.net/publication/349309756_Efficient_Conditional_GAN_Transfer_with_Knowledge_Propagation_across_Classes
  • Code: http://github.com/mshahbazi72/cGANTransfer

Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing

  • Paper: None
  • Code: None

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

  • Paper: https://arxiv.org/abs/2011.14107
  • Code: None

Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation

  • Homepage: https://eladrich.github.io/pixel2style2pixel/
  • Paper: https://arxiv.org/abs/2008.00951
  • Code: https://github.com/eladrich/pixel2style2pixel

A 3D GAN for Improved Large-pose Facial Recognition

  • Paper: https://arxiv.org/abs/2012.10545
  • Code: None

HumanGAN: A Generative Model of Humans Images

  • Paper: https://arxiv.org/abs/2103.06902
  • Code: None

ID-Unet: Iterative Soft and Hard Deformation for View Synthesis

  • Paper: https://arxiv.org/abs/2103.02264
  • Code: https://github.com/MingyuY/Iterative-view-synthesis

CoMoGAN: continuous model-guided image-to-image translation

  • Paper(Oral): https://arxiv.org/abs/2103.06879
  • Code: https://github.com/cv-rits/CoMoGAN

Training Generative Adversarial Networks in One Stage

  • Paper: https://arxiv.org/abs/2103.00430
  • Code: None

Closed-Form Factorization of Latent Semantics in GANs

  • Homepage: https://genforce.github.io/sefa/
  • Paper(Oral): https://arxiv.org/abs/2007.06600
  • Code: https://github.com/genforce/sefa

Anycost GANs for Interactive Image Synthesis and Editing

  • Paper: https://arxiv.org/abs/2103.03243
  • Code: https://github.com/mit-han-lab/anycost-gan

Image-to-image Translation via Hierarchical Style Disentanglement

  • Paper: https://arxiv.org/abs/2103.01456
  • Code: https://github.com/imlixinyang/HiSD

VAE

Soft-IntroVAE: Analyzing and Improving Introspective Variational Autoencoders

  • Homepage: https://taldatech.github.io/soft-intro-vae-web/

  • Paper: https://arxiv.org/abs/2012.13253

  • Code: https://github.com/taldatech/soft-intro-vae-pytorch

Visual Transformer

1. End-to-End Human Pose and Mesh Reconstruction with Transformers

  • Paper: https://arxiv.org/abs/2012.09760
  • Code: https://github.com/microsoft/MeshTransformer

2. Temporal-Relational CrossTransformers for Few-Shot Action Recognition

  • Paper: https://arxiv.org/abs/2101.06184
  • Code: https://github.com/tobyperrett/trx

3. Kaleido-BERT:Vision-Language Pre-training on Fashion Domain

  • Paper: https://arxiv.org/abs/2103.16110
  • Code: https://github.com/mczhuge/Kaleido-BERT

4. HOTR: End-to-End Human-Object Interaction Detection with Transformers

  • Paper: https://arxiv.org/abs/2104.13682
  • Code: https://github.com/kakaobrain/HOTR

5. Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

  • Paper: https://arxiv.org/abs/2104.09224
  • Code: https://github.com/autonomousvision/transfuser

6. Pose Recognition with Cascade Transformers

  • Paper: https://arxiv.org/abs/2104.06976

  • Code: https://github.com/mlpc-ucsd/PRTR

7. Variational Transformer Networks for Layout Generation

  • Paper: https://arxiv.org/abs/2104.02416
  • Code: None

8. LoFTR: Detector-Free Local Feature Matching with Transformers

  • Homepage: https://zju3dv.github.io/loftr/
  • Paper: https://arxiv.org/abs/2104.00680
  • Code: https://github.com/zju3dv/LoFTR

9. Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

  • Paper: https://arxiv.org/abs/2012.15840
  • Code: https://github.com/fudan-zvg/SETR

10. Thinking Fast and Slow: Efficient Text-to-Visual Retrieval with Transformers

  • Paper: https://arxiv.org/abs/2103.16553
  • Code: None

11. Transformer Tracking

  • Paper: https://arxiv.org/abs/2103.15436
  • Code: https://github.com/chenxin-dlut/TransT

12. HR-NAS: Searching Efficient High-Resolution Neural Architectures with Transformers

  • Paper(Oral): https://arxiv.org/abs/2106.06560
  • Code: https://github.com/dingmyu/HR-NAS

13. MIST: Multiple Instance Spatial Transformer

  • Paper: https://arxiv.org/abs/1811.10725
  • Code: None

14. Multimodal Motion Prediction with Stacked Transformers

  • Paper: https://arxiv.org/abs/2103.11624
  • Code: https://decisionforce.github.io/mmTransformer

15. Revamping cross-modal recipe retrieval with hierarchical Transformers and self-supervised learning

  • Paper: https://www.amazon.science/publications/revamping-cross-modal-recipe-retrieval-with-hierarchical-transformers-and-self-supervised-learning

  • Code: https://github.com/amzn/image-to-recipe-transformers

16. Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking

  • Paper(Oral): https://arxiv.org/abs/2103.11681

  • Code: https://github.com/594422814/TransformerTrack

17. Pre-Trained Image Processing Transformer

  • Paper: https://arxiv.org/abs/2012.00364
  • Code: None

18. End-to-End Video Instance Segmentation with Transformers

  • Paper(Oral): https://arxiv.org/abs/2011.14503
  • Code: https://github.com/Epiphqny/VisTR

19. UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

  • Paper(Oral): https://arxiv.org/abs/2011.09094
  • Code: https://github.com/dddzg/up-detr

20. End-to-End Human Object Interaction Detection with HOI Transformer

  • Paper: https://arxiv.org/abs/2103.04503
  • Code: https://github.com/bbepoch/HoiTransformer

21. Transformer Interpretability Beyond Attention Visualization

  • Paper: https://arxiv.org/abs/2012.09838
  • Code: https://github.com/hila-chefer/Transformer-Explainability

22. Diverse Part Discovery: Occluded Person Re-Identification With Part-Aware Transformer

  • Paper: None
  • Code: None

23. LayoutTransformer: Scene Layout Generation With Conceptual and Spatial Diversity

  • Paper: None
  • Code: None

24. Line Segment Detection Using Transformers without Edges

  • Paper(Oral): https://arxiv.org/abs/2101.01909
  • Code: None

25. MaX-DeepLab: End-to-End Panoptic Segmentation With Mask Transformers

  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Wang_MaX-DeepLab_End-to-End_Panoptic_Segmentation_With_Mask_Transformers_CVPR_2021_paper.html
  • Code: None

26. SSTVOS: Sparse Spatiotemporal Transformers for Video Object Segmentation

  • Paper(Oral): https://arxiv.org/abs/2101.08833
  • Code: https://github.com/dukebw/SSTVOS

27. Facial Action Unit Detection With Transformers

  • Paper: None
  • Code: None

28. Clusformer: A Transformer Based Clustering Approach to Unsupervised Large-Scale Face and Visual Landmark Recognition

  • Paper: None
  • Code: None

29. Lesion-Aware Transformers for Diabetic Retinopathy Grading

  • Paper: None
  • Code: None

30. Topological Planning With Transformers for Vision-and-Language Navigation

  • Paper: https://arxiv.org/abs/2012.05292
  • Code: None

31. Adaptive Image Transformer for One-Shot Object Detection

  • Paper: None
  • Code: None

32. Multi-Stage Aggregated Transformer Network for Temporal Language Localization in Videos

  • Paper: None
  • Code: None

33. Taming Transformers for High-Resolution Image Synthesis

  • Homepage: https://compvis.github.io/taming-transformers/
  • Paper(Oral): https://arxiv.org/abs/2012.09841
  • Code: https://github.com/CompVis/taming-transformers

34. Self-Supervised Video Hashing via Bidirectional Transformers

  • Paper: None
  • Code: None

35. Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos

  • Paper(Oral): https://hehefan.github.io/pdfs/p4transformer.pdf
  • Code: None

36. Gaussian Context Transformer

  • Paper: None
  • Code: None

37. General Multi-Label Image Classification With Transformers

  • Paper: https://arxiv.org/abs/2011.14027
  • Code: None

38. Bottleneck Transformers for Visual Recognition

  • Paper: https://arxiv.org/abs/2101.11605
  • Code: None

39. VLN BERT: A Recurrent Vision-and-Language BERT for Navigation

  • Paper(Oral): https://arxiv.org/abs/2011.13922
  • Code: https://github.com/YicongHong/Recurrent-VLN-BERT

40. Less Is More: ClipBERT for Video-and-Language Learning via Sparse Sampling

  • Paper(Oral): https://arxiv.org/abs/2102.06183
  • Code: https://github.com/jayleicn/ClipBERT

41. Self-attention based Text Knowledge Mining for Text Detection

  • Paper: None
  • Code: https://github.com/CVI-SZU/STKM

42. SSAN: Separable Self-Attention Network for Video Representation Learning

  • Paper: None
  • Code: None

43. Scaling Local Self-Attention For Parameter Efficient Visual Backbones

  • Paper(Oral): https://arxiv.org/abs/2103.12731

  • Code: None

Regularization

Regularizing Neural Networks via Adversarial Model Perturbation

  • Paper: https://arxiv.org/abs/2010.04925
  • Code: https://github.com/hiyouga/AMP-Regularizer

SLAM

Differentiable SLAM-net: Learning Particle SLAM for Visual Navigation

  • Paper: https://arxiv.org/abs/2105.07593
  • Code: None

Generalizing to the Open World: Deep Visual Odometry with Online Adaptation

  • Paper: https://arxiv.org/abs/2103.15279
  • Code: https://arxiv.org/abs/2103.15279

长尾分布(Long-Tailed)

Adversarial Robustness under Long-Tailed Distribution

  • Paper(Oral): https://arxiv.org/abs/2104.02703
  • Code: https://github.com/wutong16/Adversarial_Long-Tail

Distribution Alignment: A Unified Framework for Long-tail Visual Recognition

  • Paper: https://arxiv.org/abs/2103.16370
  • Code: https://github.com/Megvii-BaseDetection/DisAlign

Adaptive Class Suppression Loss for Long-Tail Object Detection

  • Paper: https://arxiv.org/abs/2104.00885
  • Code: https://github.com/CASIA-IVA-Lab/ACSL

Contrastive Learning based Hybrid Networks for Long-Tailed Image Classification

  • Paper: https://arxiv.org/abs/2103.14267
  • Code: None

数据增广(Data Augmentation)

Scale-aware Automatic Augmentation for Object Detection

  • Paper: https://arxiv.org/abs/2103.17220

  • Code: https://github.com/Jia-Research-Lab/SA-AutoAug

无监督/自监督(Un/Self-Supervised)

Domain-Specific Suppression for Adaptive Object Detection

  • Paper: https://arxiv.org/abs/2105.03570
  • Code: None

A Large-Scale Study on Unsupervised Spatiotemporal Representation Learning

  • Paper: https://arxiv.org/abs/2104.14558

  • Code: https://github.com/facebookresearch/SlowFast

Unsupervised Multi-Source Domain Adaptation for Person Re-Identification

  • Paper: https://arxiv.org/abs/2104.12961
  • Code: None

Self-supervised Video Representation Learning by Context and Motion Decoupling

  • Paper: https://arxiv.org/abs/2104.00862
  • Code: None

Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning

  • Homepage: https://fingerrec.github.io/index_files/jinpeng/papers/CVPR2021/project_website.html
  • Paper: https://arxiv.org/abs/2009.05769
  • Code: https://github.com/FingerRec/BE

Spatially Consistent Representation Learning

  • Paper: https://arxiv.org/abs/2103.06122
  • Code: None

VideoMoCo: Contrastive Video Representation Learning with Temporally Adversarial Examples

  • Paper: https://arxiv.org/abs/2103.05905
  • Code: https://github.com/tinapan-pt/VideoMoCo

Exploring Simple Siamese Representation Learning

  • Paper(Oral): https://arxiv.org/abs/2011.10566
  • Code: None

Dense Contrastive Learning for Self-Supervised Visual Pre-Training

  • Paper(Oral): https://arxiv.org/abs/2011.09157
  • Code: https://github.com/WXinlong/DenseCL

半监督学习(Semi-Supervised )

Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

  • 作者单位: 阿里巴巴

  • Paper: https://arxiv.org/abs/2103.11402

  • Code: None

Adaptive Consistency Regularization for Semi-Supervised Transfer Learning

  • Paper: https://arxiv.org/abs/2103.02193
  • Code: https://github.com/SHI-Labs/Semi-Supervised-Transfer-Learning

胶囊网络(Capsule Network)

Capsule Network is Not More Robust than Convolutional Network

  • Paper: https://arxiv.org/abs/2103.15459
  • Code: None

图像分类(Image Classification)

Correlated Input-Dependent Label Noise in Large-Scale Image Classification

  • Paper(Oral): https://arxiv.org/abs/2105.10305
  • Code: https://github.com/google/uncertainty-baselines/tree/master/baselines/imagenet

2D目标检测(Object Detection)

2D目标检测

1. Scaled-YOLOv4: Scaling Cross Stage Partial Network

2. You Only Look One-level Feature

3. Sparse R-CNN: End-to-End Object Detection with Learnable Proposals

4. End-to-End Object Detection with Fully Convolutional Network

  • 作者单位: 旷视科技, 西安交通大学
  • Paper: https://arxiv.org/abs/2012.03544
  • Code: https://github.com/Megvii-BaseDetection/DeFCN

5. Dynamic Head: Unifying Object Detection Heads with Attentions

6. Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection

7. UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

8. MobileDets: Searching for Object Detection Architectures for Mobile Accelerators

  • 作者单位: 威斯康星大学, 谷歌

  • Paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Xiong_MobileDets_Searching_for_Object_Detection_Architectures_for_Mobile_Accelerators_CVPR_2021_paper.pdf

  • Code: https://github.com/tensorflow/models/tree/master/research/object_detection

9. Tracking Pedestrian Heads in Dense Crowd

  • 作者单位: 雷恩第一大学
  • Homepage: https://project.inria.fr/crowdscience/project/dense-crowd-head-tracking/
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Sundararaman_Tracking_Pedestrian_Heads_in_Dense_Crowd_CVPR_2021_paper.html
  • Code1: https://github.com/Sentient07/HeadHunter
  • Code2: https://github.com/Sentient07/HeadHunter%E2%80%93T
  • Dataset: https://project.inria.fr/crowdscience/project/dense-crowd-head-tracking/

10. Joint-DetNAS: Upgrade Your Detector with NAS, Pruning and Dynamic Distillation

  • 作者单位: 香港科技大学, 华为诺亚
  • Paper: https://arxiv.org/abs/2105.12971
  • Code: None

11. PSRR-MaxpoolNMS: Pyramid Shifted MaxpoolNMS with Relationship Recovery

  • 作者单位: A*star, 四川大学, 南洋理工大学
  • Paper: https://arxiv.org/abs/2105.12990
  • Code: None

12. IQDet: Instance-wise Quality Distribution Sampling for Object Detection

  • 作者单位: 旷视科技
  • Paper: https://arxiv.org/abs/2104.06936
  • Code: None

13. Multi-Scale Aligned Distillation for Low-Resolution Detection

  • 作者单位: 香港中文大学, Adobe研究院, 思谋科技
  • Paper: https://jiaya.me/papers/ms_align_distill_cvpr21.pdf
  • Code: https://github.com/Jia-Research-Lab/MSAD

14. Adaptive Class Suppression Loss for Long-Tail Object Detection

  • 作者单位: 中科院, 国科大, ObjectEye, 北京大学, 鹏城实验室, Nexwise

  • Paper: https://arxiv.org/abs/2104.00885

  • Code: https://github.com/CASIA-IVA-Lab/ACSL

15. VarifocalNet: An IoU-aware Dense Object Detector

  • 作者单位: 昆士兰科技大学, 昆士兰大学
  • Paper(Oral): https://arxiv.org/abs/2008.13367
  • Code: https://github.com/hyz-xmaster/VarifocalNet

16. OTA: Optimal Transport Assignment for Object Detection

  • 作者单位: 早稻田大学, 旷视科技

  • Paper: https://arxiv.org/abs/2103.14259

  • Code: https://github.com/Megvii-BaseDetection/OTA

17. Distilling Object Detectors via Decoupled Features

  • 作者单位: 华为诺亚, 悉尼大学
  • Paper: https://arxiv.org/abs/2103.14475
  • Code: https://github.com/ggjy/DeFeat.pytorch

18. Robust and Accurate Object Detection via Adversarial Learning

  • 作者单位: 谷歌, UCLA, UCSC

  • Paper: https://arxiv.org/abs/2103.13886

  • Code: None

19. OPANAS: One-Shot Path Aggregation Network Architecture Search for Object Detection

  • 作者单位: 北京大学, Anyvision, 石溪大学
  • Paper: https://arxiv.org/abs/2103.04507
  • Code: https://github.com/VDIGPKU/OPANAS

20. Multiple Instance Active Learning for Object Detection

  • 作者单位: 国科大, 华为诺亚, 清华大学
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Yuan_Multiple_Instance_Active_Learning_for_Object_Detection_CVPR_2021_paper.pdf
  • Code: https://github.com/yuantn/MI-AOD

21. Towards Open World Object Detection

  • 作者单位: 印度理工学院, MBZUAI, 澳大利亚国立大学, 林雪平大学
  • Paper(Oral): https://arxiv.org/abs/2103.02603
  • Code: https://github.com/JosephKJ/OWOD

22. RankDetNet: Delving Into Ranking Constraints for Object Detection

  • 作者单位: 赛灵思
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Liu_RankDetNet_Delving_Into_Ranking_Constraints_for_Object_Detection_CVPR_2021_paper.html
  • Code: None

旋转目标检测

23. Dense Label Encoding for Boundary Discontinuity Free Rotation Detection

  • 作者单位: 上海交通大学, 国科大
  • Paper: https://arxiv.org/abs/2011.09670
  • Code1: https://github.com/Thinklab-SJTU/DCL_RetinaNet_Tensorflow
  • Code2: https://github.com/yangxue0827/RotationDetection

24. ReDet: A Rotation-equivariant Detector for Aerial Object Detection

  • 作者单位: 武汉大学

  • Paper: https://arxiv.org/abs/2103.07733

  • Code: https://github.com/csuhan/ReDet

25. Beyond Bounding-Box: Convex-Hull Feature Adaptation for Oriented and Densely Packed Object Detection

  • 作者单位: 国科大, 清华大学
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Guo_Beyond_Bounding-Box_Convex-Hull_Feature_Adaptation_for_Oriented_and_Densely_Packed_CVPR_2021_paper.html
  • Code: https://github.com/SDL-GuoZonghao/BeyondBoundingBox

Few-Shot目标检测

26. Accurate Few-Shot Object Detection With Support-Query Mutual Guidance and Hybrid Loss

  • 作者单位: 复旦大学, 同济大学, 浙江大学

  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Accurate_Few-Shot_Object_Detection_With_Support-Query_Mutual_Guidance_and_Hybrid_CVPR_2021_paper.html

  • Code: None

27. Adaptive Image Transformer for One-Shot Object Detection

  • 作者单位: 中央研究院, 台湾AI Labs
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Adaptive_Image_Transformer_for_One-Shot_Object_Detection_CVPR_2021_paper.html
  • Code: None

28. Dense Relation Distillation with Context-aware Aggregation for Few-Shot Object Detection

  • 作者单位: 北京大学, 北邮
  • Paper: https://arxiv.org/abs/2103.17115
  • Code: https://github.com/hzhupku/DCNet

29. Semantic Relation Reasoning for Shot-Stable Few-Shot Object Detection

  • 作者单位: 卡内基梅隆大学(CMU)

  • Paper: https://arxiv.org/abs/2103.01903

  • Code: None

30. FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding

  • 作者单位: 南加利福尼亚大学, 旷视科技
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Sun_FSCE_Few-Shot_Object_Detection_via_Contrastive_Proposal_Encoding_CVPR_2021_paper.html
  • Code: https://github.com/MegviiDetection/FSCE

31. Hallucination Improves Few-Shot Object Detection

  • 作者单位: 伊利诺伊大学厄巴纳-香槟分校
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Hallucination_Improves_Few-Shot_Object_Detection_CVPR_2021_paper.html
  • Code: https://github.com/pppplin/HallucFsDet

32. Few-Shot Object Detection via Classification Refinement and Distractor Retreatment

  • 作者单位: 新加坡国立大学, SIMTech
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Li_Few-Shot_Object_Detection_via_Classification_Refinement_and_Distractor_Retreatment_CVPR_2021_paper.html
  • Code: None

33. Generalized Few-Shot Object Detection Without Forgetting

  • 作者单位: 旷视科技
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Fan_Generalized_Few-Shot_Object_Detection_Without_Forgetting_CVPR_2021_paper.html
  • Code: None

34. Transformation Invariant Few-Shot Object Detection

  • 作者单位: 华为诺亚方舟实验室

  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Li_Transformation_Invariant_Few-Shot_Object_Detection_CVPR_2021_paper.html

  • Code: None

35. UniT: Unified Knowledge Transfer for Any-Shot Object Detection and Segmentation

  • 作者单位: 不列颠哥伦比亚大学, Vector AI, CIFAR AI Chair
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Khandelwal_UniT_Unified_Knowledge_Transfer_for_Any-Shot_Object_Detection_and_Segmentation_CVPR_2021_paper.html
  • Code: https://github.com/ubc-vision/UniT

36. Beyond Max-Margin: Class Margin Equilibrium for Few-Shot Object Detection

  • 作者单位: 国科大, 厦门大学, 鹏城实验室
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Li_Beyond_Max-Margin_Class_Margin_Equilibrium_for_Few-Shot_Object_Detection_CVPR_2021_paper.html
  • Code: https://github.com/Bohao-Lee/CME

半监督目标检测

37. Points As Queries: Weakly Semi-Supervised Object Detection by Points]

  • 作者单位: 旷视科技, 复旦大学
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Points_As_Queries_Weakly_Semi-Supervised_Object_Detection_by_Points_CVPR_2021_paper.html
  • Code: None

38. Data-Uncertainty Guided Multi-Phase Learning for Semi-Supervised Object Detection

  • 作者单位: 清华大学
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Data-Uncertainty_Guided_Multi-Phase_Learning_for_Semi-Supervised_Object_Detection_CVPR_2021_paper.html
  • Code: None

39. Positive-Unlabeled Data Purification in the Wild for Object Detection

  • 作者单位: 华为诺亚方舟实验室, 悉尼大学, 北京大学

  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Guo_Positive-Unlabeled_Data_Purification_in_the_Wild_for_Object_Detection_CVPR_2021_paper.html

  • Code: None

40. Interactive Self-Training With Mean Teachers for Semi-Supervised Object Detection

  • 作者单位: 阿里巴巴, 香港理工大学
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Yang_Interactive_Self-Training_With_Mean_Teachers_for_Semi-Supervised_Object_Detection_CVPR_2021_paper.html
  • Code: None

41. Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

  • 作者单位: 阿里巴巴
  • Paper: https://arxiv.org/abs/2103.11402
  • Code: None

42. Humble Teachers Teach Better Students for Semi-Supervised Object Detection

  • 作者单位: 卡内基梅隆大学(CMU), 亚马逊
  • Homepage: https://yihet.com/humble-teacher
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Tang_Humble_Teachers_Teach_Better_Students_for_Semi-Supervised_Object_Detection_CVPR_2021_paper.html
  • Code: https://github.com/lryta/HumbleTeacher

43. Interpolation-Based Semi-Supervised Learning for Object Detection

  • 作者单位: 首尔大学, 阿尔托大学等
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Jeong_Interpolation-Based_Semi-Supervised_Learning_for_Object_Detection_CVPR_2021_paper.html
  • Code: https://github.com/soo89/ISD-SSD

域自适应目标检测

44. Domain-Specific Suppression for Adaptive Object Detection

  • 作者单位: 中科院, 寒武纪, 国科大
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Domain-Specific_Suppression_for_Adaptive_Object_Detection_CVPR_2021_paper.html
  • Code: None

45. MeGA-CDA: Memory Guided Attention for Category-Aware Unsupervised Domain Adaptive Object Detection

  • 作者单位: 约翰斯·霍普金斯大学, 梅赛德斯—奔驰
  • Paper: https://arxiv.org/abs/2103.04224
  • Code: None

46. Unbiased Mean Teacher for Cross-Domain Object Detection

  • 作者单位: 电子科技大学, ETH Zurich
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Deng_Unbiased_Mean_Teacher_for_Cross-Domain_Object_Detection_CVPR_2021_paper.html
  • Code: https://github.com/kinredon/umt

47. I^3Net: Implicit Instance-Invariant Network for Adapting One-Stage Object Detectors

  • 作者单位: 香港大学, 厦门大学, Deepwise AI Lab
  • Paper: https://arxiv.org/abs/2103.13757
  • Code: None

自监督目标检测

48. There Is More Than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking With Sound by Distilling Multimodal Knowledge

  • 作者单位: 弗莱堡大学
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Valverde_There_Is_More_Than_Meets_the_Eye_Self-Supervised_Multi-Object_Detection_CVPR_2021_paper.html
  • Code: http://rl.uni-freiburg.de/research/multimodal-distill

49. Instance Localization for Self-supervised Detection Pretraining

  • 作者单位: 香港中文大学, 微软亚洲研究院
  • Paper: https://arxiv.org/abs/2102.08318
  • Code: https://github.com/limbo0000/InstanceLoc

弱监督目标检测

50. Informative and Consistent Correspondence Mining for Cross-Domain Weakly Supervised Object Detection

  • 作者单位: 北航, 鹏城实验室, 商汤科技
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Hou_Informative_and_Consistent_Correspondence_Mining_for_Cross-Domain_Weakly_Supervised_Object_CVPR_2021_paper.html
  • Code: None

51. DAP: Detection-Aware Pre-training with Weak Supervision

  • 作者单位: UIUC, 微软
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Zhong_DAP_Detection-Aware_Pre-Training_With_Weak_Supervision_CVPR_2021_paper.html
  • Code: None

其他

52. Open-Vocabulary Object Detection Using Captions

  • 作者单位:Snap, 哥伦比亚大学

  • Paper(Oral): https://openaccess.thecvf.com/content/CVPR2021/html/Zareian_Open-Vocabulary_Object_Detection_Using_Captions_CVPR_2021_paper.html

  • Code: https://github.com/alirezazareian/ovr-cnn

53. Depth From Camera Motion and Object Detection

  • 作者单位: 密歇根大学, SIAI

  • Paper: https://arxiv.org/abs/2103.01468

  • Code: https://github.com/griffbr/ODMD

  • Dataset: https://github.com/griffbr/ODMD

54. Unsupervised Object Detection With LIDAR Clues

  • 作者单位: 商汤科技, 国科大, 中科大
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Tian_Unsupervised_Object_Detection_With_LIDAR_Clues_CVPR_2021_paper.html
  • Code: None

55. GAIA: A Transfer Learning System of Object Detection That Fits Your Needs

  • 作者单位: 国科大, 北理, 中科院, 商汤科技
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Bu_GAIA_A_Transfer_Learning_System_of_Object_Detection_That_Fits_CVPR_2021_paper.html
  • Code: https://github.com/GAIA-vision/GAIA-det

56. General Instance Distillation for Object Detection

  • 作者单位: 旷视科技, 北航
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Dai_General_Instance_Distillation_for_Object_Detection_CVPR_2021_paper.html
  • Code: None

57. AQD: Towards Accurate Quantized Object Detection

  • 作者单位: 蒙纳士大学, 阿德莱德大学, 华南理工大学
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Chen_AQD_Towards_Accurate_Quantized_Object_Detection_CVPR_2021_paper.html
  • Code: https://github.com/aim-uofa/model-quantization

58. Scale-Aware Automatic Augmentation for Object Detection

  • 作者单位: 香港中文大学, 字节跳动AI Lab, 思谋科技
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Scale-Aware_Automatic_Augmentation_for_Object_Detection_CVPR_2021_paper.html
  • Code: https://github.com/Jia-Research-Lab/SA-AutoAug

59. Equalization Loss v2: A New Gradient Balance Approach for Long-Tailed Object Detection

  • 作者单位: 同济大学, 商汤科技, 清华大学
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Tan_Equalization_Loss_v2_A_New_Gradient_Balance_Approach_for_Long-Tailed_CVPR_2021_paper.html
  • Code: https://github.com/tztztztztz/eqlv2

60. Class-Aware Robust Adversarial Training for Object Detection

  • 作者单位: 哥伦比亚大学, 中央研究院
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Class-Aware_Robust_Adversarial_Training_for_Object_Detection_CVPR_2021_paper.html
  • Code: None

61. Improved Handling of Motion Blur in Online Object Detection

  • 作者单位: 伦敦大学学院
  • Homepage: http://visual.cs.ucl.ac.uk/pubs/handlingMotionBlur/
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Sayed_Improved_Handling_of_Motion_Blur_in_Online_Object_Detection_CVPR_2021_paper.html
  • Code: None

62. Multiple Instance Active Learning for Object Detection

  • 作者单位: 国科大, 华为诺亚
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Yuan_Multiple_Instance_Active_Learning_for_Object_Detection_CVPR_2021_paper.html
  • Code: https://github.com/yuantn/MI-AOD

63. Neural Auto-Exposure for High-Dynamic Range Object Detection

  • 作者单位: Algolux, 普林斯顿大学
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Onzon_Neural_Auto-Exposure_for_High-Dynamic_Range_Object_Detection_CVPR_2021_paper.html
  • Code: None

64. Generalizable Pedestrian Detection: The Elephant in the Room

  • 作者单位: IIAI, 阿尔托大学
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Hasan_Generalizable_Pedestrian_Detection_The_Elephant_in_the_Room_CVPR_2021_paper.html
  • Code: https://github.com/hasanirtiza/Pedestron

65. Neural Auto-Exposure for High-Dynamic Range Object Detection

  • 作者单位: Algolux, 普林斯顿大学
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Onzon_Neural_Auto-Exposure_for_High-Dynamic_Range_Object_Detection_CVPR_2021_paper.html
  • Code: None

单/多目标跟踪(Object Tracking)

单目标跟踪

LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search

  • Paper: https://arxiv.org/abs/2104.14545

  • Code: https://github.com/researchmm/LightTrack

Towards More Flexible and Accurate Object Tracking with Natural Language: Algorithms and Benchmark

  • Homepage: https://sites.google.com/view/langtrackbenchmark/

  • Paper: https://arxiv.org/abs/2103.16746

  • Evaluation Toolkit: https://github.com/wangxiao5791509/TNL2K_evaluation_toolkit

  • Demo Video: https://www.youtube.com/watch?v=7lvVDlkkff0&ab_channel=XiaoWang

IoU Attack: Towards Temporally Coherent Black-Box Adversarial Attack for Visual Object Tracking

  • Paper: https://arxiv.org/abs/2103.14938
  • Code: https://github.com/VISION-SJTU/IoUattack

Graph Attention Tracking

  • Paper: https://arxiv.org/abs/2011.11204
  • Code: https://github.com/ohhhyeahhh/SiamGAT

Rotation Equivariant Siamese Networks for Tracking

  • Paper: https://arxiv.org/abs/2012.13078
  • Code: None

Track to Detect and Segment: An Online Multi-Object Tracker

  • Homepage: https://jialianwu.com/projects/TraDeS.html
  • Paper: None
  • Code: None

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking

  • Paper(Oral): https://arxiv.org/abs/2103.11681

  • Code: https://github.com/594422814/TransformerTrack

Transformer Tracking

  • Paper: https://arxiv.org/abs/2103.15436
  • Code: https://github.com/chenxin-dlut/TransT

多目标跟踪

Tracking Pedestrian Heads in Dense Crowd

  • Homepage: https://project.inria.fr/crowdscience/project/dense-crowd-head-tracking/
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Sundararaman_Tracking_Pedestrian_Heads_in_Dense_Crowd_CVPR_2021_paper.html
  • Code1: https://github.com/Sentient07/HeadHunter
  • Code2: https://github.com/Sentient07/HeadHunter%E2%80%93T
  • Dataset: https://project.inria.fr/crowdscience/project/dense-crowd-head-tracking/

Multiple Object Tracking with Correlation Learning

  • Paper: https://arxiv.org/abs/2104.03541
  • Code: None

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

  • Paper: https://arxiv.org/abs/2012.02337
  • Code: None

Learning a Proposal Classifier for Multiple Object Tracking

  • Paper: https://arxiv.org/abs/2103.07889
  • Code: https://github.com/daip13/LPC_MOT.git

Track to Detect and Segment: An Online Multi-Object Tracker

  • Homepage: https://jialianwu.com/projects/TraDeS.html
  • Paper: https://arxiv.org/abs/2103.08808
  • Code: https://github.com/JialianW/TraDeS

语义分割(Semantic Segmentation)

1. HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation

  • 作者单位: Facebook AI, 巴伊兰大学, 特拉维夫大学

  • Homepage: https://nirkin.com/hyperseg/

  • Paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Nirkin_HyperSeg_Patch-Wise_Hypernetwork_for_Real-Time_Semantic_Segmentation_CVPR_2021_paper.pdf

  • Code: https://github.com/YuvalNirkin/hyperseg

2. Rethinking BiSeNet For Real-time Semantic Segmentation

  • 作者单位: 美团

  • Paper: https://arxiv.org/abs/2104.13188

  • Code: https://github.com/MichaelFan01/STDC-Seg

3. Progressive Semantic Segmentation

  • 作者单位: VinAI Research, VinUniversity, 阿肯色大学, 石溪大学
  • Paper: https://arxiv.org/abs/2104.03778
  • Code: https://github.com/VinAIResearch/MagNet

4. Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

  • 作者单位: 复旦大学, 牛津大学, 萨里大学, 腾讯优图, Facebook AI
  • Homepage: https://fudan-zvg.github.io/SETR
  • Paper: https://arxiv.org/abs/2012.15840
  • Code: https://github.com/fudan-zvg/SETR

5. Capturing Omni-Range Context for Omnidirectional Segmentation

  • 作者单位: 卡尔斯鲁厄理工学院, 卡尔·蔡司, 华为
  • Paper: https://arxiv.org/abs/2103.05687
  • Code: None

6. Learning Statistical Texture for Semantic Segmentation

  • 作者单位: 北航, 商汤科技
  • Paper: https://arxiv.org/abs/2103.04133
  • Code: None

7. InverseForm: A Loss Function for Structured Boundary-Aware Segmentation

  • 作者单位: 高通AI研究院
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Borse_InverseForm_A_Loss_Function_for_Structured_Boundary-Aware_Segmentation_CVPR_2021_paper.html
  • Code: None

8. DCNAS: Densely Connected Neural Architecture Search for Semantic Image Segmentation

  • 作者单位: Joyy Inc, 快手, 北航等
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_DCNAS_Densely_Connected_Neural_Architecture_Search_for_Semantic_Image_Segmentation_CVPR_2021_paper.html
  • Code: None

弱监督语义分割

9. Railroad Is Not a Train: Saliency As Pseudo-Pixel Supervision for Weakly Supervised Semantic Segmentation

  • 作者单位: 延世大学, 成均馆大学
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Lee_Railroad_Is_Not_a_Train_Saliency_As_Pseudo-Pixel_Supervision_for_CVPR_2021_paper.html
  • Code: https://github.com/halbielee/EPS

10. Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation

  • 作者单位: 延世大学
  • Homepage: https://cvlab.yonsei.ac.kr/projects/BANA/
  • Paper: https://arxiv.org/abs/2104.00905
  • Code: None

11. Non-Salient Region Object Mining for Weakly Supervised Semantic Segmentation

  • 作者单位: 南京理工大学, MBZUAI, 电子科技大学, 阿德莱德大学, 悉尼科技大学

  • Paper: https://arxiv.org/abs/2103.14581

  • Code: https://github.com/NUST-Machine-Intelligence-Laboratory/nsrom

12. Embedded Discriminative Attention Mechanism for Weakly Supervised Semantic Segmentation

  • 作者单位: 北京理工大学, 美团
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Wu_Embedded_Discriminative_Attention_Mechanism_for_Weakly_Supervised_Semantic_Segmentation_CVPR_2021_paper.html
  • Code: https://github.com/allenwu97/EDAM

13. BBAM: Bounding Box Attribution Map for Weakly Supervised Semantic and Instance Segmentation

  • 作者单位: 首尔大学
  • Paper: https://arxiv.org/abs/2103.08907
  • Code: https://github.com/jbeomlee93/BBAM

半监督语义分割

14. Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

  • 作者单位: 北京大学, 微软亚洲研究院
  • Paper: https://arxiv.org/abs/2106.01226
  • Code: https://github.com/charlesCXK/TorchSemiSeg

15. Semi-supervised Domain Adaptation based on Dual-level Domain Mixing for Semantic Segmentation

  • 作者单位: 华为, 大连理工大学, 北京大学
  • Paper: https://arxiv.org/abs/2103.04705
  • Code: None

16. Semi-Supervised Semantic Segmentation With Directional Context-Aware Consistency

  • 作者单位: 香港中文大学, 思谋科技, 牛津大学
  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Lai_Semi-Supervised_Semantic_Segmentation_With_Directional_Context-Aware_Consistency_CVPR_2021_paper.html
  • Code: None

17. Semantic Segmentation With Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalization