Flink---分流

Posted Shall潇

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Flink---分流相关的知识,希望对你有一定的参考价值。

Flink中将一个流拆分成多个流的方法有两个:split(已过时),process(推荐)

文章目录

split

package Flink.transform;

import Flink.beans.SensorReading;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.collector.selector.OutputSelector;
import org.apache.flink.streaming.api.datastream.*;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoMapFunction;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011;
import org.apache.kafka.clients.consumer.ConsumerConfig;

import java.util.Collections;
import java.util.Properties;

/**
 * @Author shall潇
 * @Date 2021/6/29
 * @Description     分流-合流
 * 					从kafka读取进行分流,按照高、低、正常进行分流
 */
public class Transform3 {
    public static void main(String[] args) {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        Properties properties = new Properties();
        properties.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.159.100:9092");
        properties.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer");
        properties.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer");
        properties.setProperty(ConsumerConfig.GROUP_ID_CONFIG,"gro1");
        properties.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"latest");

        DataStreamSource<String> dss = env.addSource(new FlinkKafkaConsumer011<String>("flinkKafka", new SimpleStringSchema(), properties));

        SingleOutputStreamOperator<SensorReading> mapStream = dss.map(line -> {
            String[] split = line.split(",");
            SensorReading sr = new SensorReading(split[0], Long.valueOf(split[1]), Double.valueOf(split[2]));
            return sr;
        });

        SplitStream<SensorReading> splitStream = mapStream.split(new OutputSelector<SensorReading>() {
            @Override
            public Iterable<String> select(SensorReading sensorReading) {
                if (sensorReading.getTemperature() > 38.0) {
                    return Collections.singletonList("high");
                } else if(sensorReading.getTemperature() > 36.0){
                    return Collections.singletonList("normal");
                }else {
                    return Collections.singletonList("lower");
                }
            }
        });

		// 通过 split 方法进行分流
        DataStream<SensorReading> high = splitStream.select("high");
        DataStream<SensorReading> normal = splitStream.select("normal");
        DataStream<SensorReading> lower = splitStream.select("lower");

        high.print("high");
        normal.print("normal");
        lower.print("lower");

        // union : 合流 要求所有流的数据格式完全相同
        DataStream<SensorReading> unionStream = high.union(normal, lower);
        unionStream.print("union");

        // connect : 合流 不要求...,只能两个合
        SingleOutputStreamOperator<Tuple2<String, Double>> warning = high.map(new MapFunction<SensorReading, Tuple2<String, Double>>() {
            @Override
            public Tuple2<String, Double> map(SensorReading sensorReading) throws Exception {
                return new Tuple2<>(sensorReading.getId(), sensorReading.getTemperature());
            }
        });

        ConnectedStreams<SensorReading, Tuple2<String, Double>> connectStream = normal.connect(warning);

        SingleOutputStreamOperator<Object> map = connectStream.map(new CoMapFunction<SensorReading, Tuple2<String, Double>, Object>() {
            @Override
            public Object map1(SensorReading sensorReading) throws Exception {
                return new Tuple2<>(sensorReading.getId(), "健康");
            }

            @Override
            public Object map2(Tuple2<String, Double> stringDoubleTuple2) throws Exception {
                return new Tuple3<>(stringDoubleTuple2.f0, stringDoubleTuple2.f1, "发烧了");
            }
        });
        
        try {
            env.execute("split-demo");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    private static class MyRichMapFunction extends RichMapFunction<SensorReading, Tuple2<String, Double>>{

        @Override
        public void open(Configuration parameters) throws Exception {
            super.open(parameters);
        }

        @Override
        public void close() throws Exception {
            super.close();
        }

        @Override
        public Tuple2<String, Double> map(SensorReading sensorReading) throws Exception {
            return null;
        }
    }
}

process

package Flink.process;

import Flink.beans.SensorReading;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.util.Collector;
import org.apache.flink.util.OutputTag;

/**
 * @Author shall潇
 * @Date 2021/7/6
 * @Description		将温度按照高温、正常、低温分流
 */
public class Process4_Function {
    public static void main(String[] args) {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        
        //使用侧输出流获得
        OutputTag<SensorReading> highTemp = new OutputTag<SensorReading>("highTemp"){};
        OutputTag<SensorReading> lowTemp = new OutputTag<SensorReading>("lowTemp"){};

        DataStreamSource<String> dataStreamSource = env.socketTextStream("192.168.159.100", 7777);
        SingleOutputStreamOperator<SensorReading> mapStream = dataStreamSource.map(line -> {
            String[] split = line.split(",");
            SensorReading sensorReading = new SensorReading(split[0], Long.valueOf(split[1]), Double.valueOf(split[2]));
            return sensorReading;
        });

        SingleOutputStreamOperator<SensorReading> process = mapStream.process(new MyProcessFunction2(highTemp,lowTemp));

        process.print("normal");

		// 通过getSideOutPut获取指定测输出流,参数:OutputTag
        DataStream<SensorReading> sideOutput1 = process.getSideOutput(highTemp);
        sideOutput1.print("high-temp");
        DataStream<SensorReading> sideOutput2 = process.getSideOutput(lowTemp);
        sideOutput2.print("low-temp");

        try {
            env.execute("process-2");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    private static class MyProcessFunction2 extends ProcessFunction<SensorReading, SensorReading> {
        private OutputTag<SensorReading> highTemp;
        private OutputTag<SensorReading> lowTemp;

        public MyProcessFunction2(OutputTag<SensorReading> highTemp, OutputTag<SensorReading> lowTemp) {
            this.highTemp = highTemp;
            this.lowTemp = lowTemp;
        }

        @Override
        public void processElement(SensorReading sensorReading, Context context, Collector<SensorReading> collector) throws Exception {
                /*高温、低温---选择放入测输出流*/
            if(sensorReading.getTemperature()>37){
                context.output(highTemp,sensorReading);
            }else if(sensorReading.getTemperature()<36){
                context.output(lowTemp,sensorReading);
            }else {
                /*正常温度---选择主流*/
                collector.collect(sensorReading);
            }
        }
    }
}

以上是关于Flink---分流的主要内容,如果未能解决你的问题,请参考以下文章

Flink---分流

Flink---分流

Flink---分流

Flink DataStream Split 实现分流

Flink DataStream Split 实现分流

Flink 实战系列Flink 消费多个 Topic 数据利用侧流输出完成分流功能