Java集合源码解析-ConcurrentHashMap(JDK8)

Posted JavaEdge.

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Java集合源码解析-ConcurrentHashMap(JDK8)相关的知识,希望对你有一定的参考价值。

为并发而生的 ConcurrentHashMap

数据结构

Java 7为实现并发访问,引入了Segment这一结构,实现了分段锁,理论上最大并发度与Segment个数相等。

Java 8取消了基于 Segment 的分段锁思想,改用CAS + synchronized 控制并发操作,在某些方面提升了性能。并且追随 1.8 版本的 HashMap 底层实现,使用数组+链表+红黑树进行数据存储。
JAVA 8 ConcurrentHashMap

  • 和 HashMap 中的语义一样,代表整个哈希表。在第一次插入时才懒加载初始化。大小永远是 2 的次幂。被迭代器直接访问。

  • 一个连接表,用于哈希表扩容,扩容完成后会被重置为 null

  • 保存着整个哈希表中存储的所有的结点的个数总和,类似于 HashMap 的 size 属性。主要用于当没有线程竞争时使用,也会作为哈希表初始化过程中的反馈。通过CAS 更新。

这是一个重要的属性,无论是初始化哈希表,还是扩容 rehash,都需要该依赖。有如下取值:

  • >0:相当于 HashMap 中的 threshold,表示阈值
  • 0:默认值
  • -1:代表哈希表正在进行初始化
  • <-1:代表有多个线程正在进行扩容
  • 构造函数的实现也和HashMap类似

    若传入 32,实际大小 64。即最接近1.5n+1的 2的次幂。因为如果你想存入 15 个元素,那么 16 是存不下的,需要扩容,所以直接给你初始化为 32 的容量。

寻址方式

同样是通过Key的哈希值与数组长度取模确定该Key在数组中的索引;
同样为了避免不太好的Key的hashCode设计,它通过如下方法计算得到Key的最终哈希值.

// usable bits of normal node hash
static final int HASH_BITS = 0x7fffffff;

不同的是,Java 8的ConcurrentHashMap作者认为引入红黑树后,即使哈希冲突比较严重,寻址效率也足够高,所以作者并未在哈希值的计算上做过多设计,只是将Key的hashCode值与其高16位作异或并保证最高位为0(从而保证最终结果为正整数)

8.3 同步方式

对于put操作,如果Key对应的数组元素为null,则通过CAS操作将其设置为当前值;
如果Key对应的数组元素(也即链表表头或者树的根元素)不为null,则对该元素使用synchronized关键字申请锁,然后进行操作;
如果该put操作使得当前链表长度超过一定阈值,则将该链表转换为树,从而提高寻址效率.

对于读操作,由于数组被volatile修饰,因此不用担心数组的可见性问题;
同时每个元素是一个Node实例(Java 7中每个元素是一个HashEntry),它的Key值和hash值都由final修饰,不可变更,无须关心它们被修改后的可见性问题;
而其Value及对下一个元素的引用由volatile修饰,可见性也有保障.

8.4 操作

put方法和remove方法都会通过addCount方法维护Map的size;
size方法通过sumCount获取由addCount方法维护的Map的size.

下面我们主要来分析下 ConcurrentHashMap 的一个核心方法 put,我们也会一并解决掉该方法中涉及到的扩容、辅助扩容,初始化哈希表等方法。

8.4.1 put

对于 HashMap 来说,多线程并发添加元素会导致数据丢失等并发问题,那么 ConcurrentHashMap 又是如何做到并发添加的呢?

/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
    //对传入的参数进行合法性判断
    if (key == null || value == null) throw new NullPointerException();
    
    //计算键所对应的 hash 值
    int hash = spread(key.hashCode());
    
    int binCount = 0;
    
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        
        //如果哈希表还未初始化,那么初始化它
        if (tab == null || (n = tab.length) == 0)
            tab = initTable();
            
        //根据键的 hash 值找到哈希数组相应的索引位置
        //如果为空,那么以CAS无锁式向该位置添加一个节点
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null)))
                break;                   
        }

这里需要详细说明的只有initTable 方法:初始化哈希表,它同时只允许一个线程进行初始化操作。

/**
  * Initializes table, using the size recorded in sizeCtl.
  */
private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    
    // 如果表为空才进行初始化操作
    while ((tab = table) == null || tab.length == 0) {
    
        // sizeCtl 小于零说明已经有线程正在进行初始化操作
        // 当前线程应该放弃 CPU 的使用
        if ((sc = sizeCtl) < 0)
            Thread.yield(); // lost initialization race; just spin
            
        // 否则说明尚未有线程对表进行初始化,那么本线程就来做这个工作
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            
            //保险起见,再次判断下表是否为空
            try {
                if ((tab = table) == null || tab.length == 0) {
                
                    //至此, sc 大于零说明容量已经初始化了,否则使用默认容量,其他线程再也无法初始化!!!
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    @SuppressWarnings("unchecked")
                    
                    //根据容量构建数组
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    table = tab = nt;
                    //计算阈值,等效于 n*0.75
                    sc = n - (n >>> 2);
                }
            } finally {
                //设置阈值
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}

该方法的核心思想就是,只允许一个线程对表进行初始化;
如果不巧有其他线程进来了,那么会让其他线程交出 CPU 等待下次系统调度;
这样,保证了表同时只会被一个线程初始化.

接着回到 putVal 方法,这样的话,我们第一部分的 putVal 源码就分析结束了
下面我们看后一部分的源码

//检测到桶结点是 ForwardingNode 类型,协助扩容
else if ((fh = f.hash) == MOVED)
     tab = helpTransfer(tab, f);

//桶结点是普通的结点,锁住该桶头结点并试图在该链表的尾部添加一个节点
else {
       V oldVal = null;
       synchronized (f) {
           if (tabAt(tab, i) == f) {
           
              //向普通的链表中添加元素,无需赘述
              if (fh >= 0) {
                 binCount = 1;
                 for (Node<K,V> e = f;; ++binCount) {
                     K ek;
                     if (e.hash == hash &&((ek = e.key) == key ||(ek != null && key.equals(ek)))) {
                         oldVal = e.val;
                         if (!onlyIfAbsent)
                            e.val = value;
                            break;
                      }
                      Node<K,V> pred = e;
                      if ((e = e.next) == null) {
                         pred.next = new Node<K,V>(hash, key,value, null);
                         break;
                      }
                 }
           }
           
           //向红黑树中添加元素,TreeBin 结点的hash值为TREEBIN(-2)
           else if (f instanceof TreeBin) {
               Node<K,V> p;
               binCount = 2;
                 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) {
                   oldVal = p.val;
                   if (!onlyIfAbsent)
                      p.val = value;
                }
           }
       }
   }
   
  //binCount != 0 说明向链表或者红黑树中添加或修改一个节点成功
  //binCount  == 0 说明 put 操作将一个新节点添加成为某个桶的首节点
  if (binCount != 0) {
  
         //链表深度超过 8 转换为红黑树
         if (binCount >= TREEIFY_THRESHOLD)
             treeifyBin(tab, i);
             
         //oldVal != null 说明此次操作是修改操作
         //直接返回旧值即可,无需做下面的扩容边界检查
         if (oldVal != null)
             return oldVal;
           break;
        }
    }
}

//CAS 式更新baseCount,并判断是否需要扩容
addCount(1L, binCount);

//程序走到这一步说明此次 put 操作是一个添加操作,否则早就 return 返回了
return null;

这一部分的源码大体上已如注释所描述,至此整个 putVal 方法的大体逻辑实现相信你也已经清晰了,好好回味一下.

下面我们对这部分中的某些方法的实现细节再做一些深入学习.
首先需要介绍一下,ForwardingNode 这个节点类型

这个节点内部保存了一个 nextTable 引用,它指向一张 hash 表;
在扩容操作中,我们需要对每个桶中的结点进行分离和转移;
如果某个桶结点中所有节点都已经迁移完成了(已经被转移到新表 nextTable);
那么会在原 table 表的该位置挂上一个 ForwardingNode 结点,说明此桶已经完成迁移.

ForwardingNode继承自 Node 结点,并且它唯一的构造函数将构建一个k/v/next 都为 null 的结点,反正它就是个标识,无需那些属性;
但是 hash 值却为 MOVED.

所以,我们在 putVal 方法中遍历整个 hash 表的桶结点,如果遇到 hash 值等于 MOVED,说明已经有线程正在扩容 rehash 操作,整体上还未完成,,过我们要插入的桶的位置已经完成了所有节点的迁移

由于检测到当前哈希表正在扩容,于是让当前线程去协助扩容.

final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
    Node<K,V>[] nextTab; int sc;
    if (tab != null && (f instanceof ForwardingNode) &&
        (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
        
        //返回一个 16 位长度的扩容校验标识
        int rs = resizeStamp(tab.length);
        
        while (nextTab == nextTable && table == tab && (sc = sizeCtl) < 0) {
            //sizeCtl 如果处于扩容状态的话
            //前 16 位是数据校验标识,后 16 位是当前正在扩容的线程总数
            //这里判断校验标识是否相等,如果校验符不等或者扩容操作已经完成了,直接退出循环,不用协助它们扩容了
            if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                sc == rs + MAX_RESIZERS || transferIndex <= 0)
                break;
                
            //否则调用 transfer 帮助它们进行扩容
            //sc + 1 标识增加了一个线程进行扩容
            if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
                transfer(tab, nextTab);
                break;
            }
        }
        return nextTab;
    }
    return table;
}

下面我们看这个稍显复杂的 transfer 方法,我们依然分几个部分来细说。

//第一部分
/**
  * Moves and/or copies the nodes in each bin to new table. See
  * above for explanation.
  */
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
        int n = tab.length, stride;
        
        //计算单个线程允许处理的最少table桶首节点个数,不能小于 16
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE;    // subdivide range 细分范围
            
        //刚开始扩容,初始化 nextTab 
        if (nextTab == null) {               // initiating
            try {
                @SuppressWarnings("unchecked")
                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
                nextTab = nt;
            } catch (Throwable ex) {
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            //transferIndex 指向最后一个桶,方便从后向前遍历 
            transferIndex = n;
        }
        int nextn = nextTab.length;
        //定义 ForwardingNode 用于标记迁移完成的桶
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);

这部分代码还是比较简单的,主要完成的是对单个线程能处理的最少桶结点个数的计算和一些属性的初始化操作。

//第二部分,并发扩容控制的核心
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
//i 指向当前桶,bound 指向当前线程需要处理的桶结点的区间下限
for (int i = 0, bound = 0;;) {
       Node<K,V> f; int fh;
       //这个 while 循环的目的就是通过 --i 遍历当前线程所分配到的桶结点
       //一个桶一个桶的处理
       while (advance) {
           int nextIndex, nextBound;
           if (--i >= bound || finishing)
               advance = false;
           //transferIndex <= 0 说明已经没有需要迁移的桶了
           else if ((nextIndex = transferIndex) <= 0) {
               i = -1;
               advance = false;
           }
           //更新 transferIndex
           //为当前线程分配任务,处理的桶结点区间为(nextBound,nextIndex)
           else if (U.compareAndSwapInt(this, TRANSFERINDEX, nextIndex,nextBound = (nextIndex > stride ? nextIndex - stride : 0))) {
               bound = nextBound;
               i = nextIndex - 1;
               advance = false;
           }
       }
       //当前线程所有任务完成
       if (i < 0 || i >= n || i + n >= nextn) {
           int sc;
           if (finishing) {
               nextTable = null;
               table = nextTab;
               sizeCtl = (n << 1) - (n >>> 1);
               return;
           }
           if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
               if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                   return;
               finishing = advance = true;
               i = n; 
           }
       }
       //待迁移桶为空,那么在此位置 CAS 添加 ForwardingNode 结点标识该桶已经被处理过了
       else if ((f = tabAt(tab, i)) == null)
           advance = casTabAt(tab, i, null, fwd);
       //如果扫描到 ForwardingNode,说明此桶已经被处理过了,跳过即可
       else if ((fh = f.hash) == MOVED)
           advance = true; 

每个新参加进来扩容的线程必然先进 while 循环的最后一个判断条件中去领取自己需要迁移的桶的区间。然后 i 指向区间的最后一个位置,表示迁移操作从后往前的做。接下来的几个判断就是实际的迁移结点操作了。等我们大致介绍完成第三部分的源码再回来对各个判断条件下的迁移过程进行详细的叙述。

//第三部分
else {
    //
    synchronized (f) {
        if (tabAt(tab, i) == f) {
            Node<K,V> ln, hn;
            //链表的迁移操作
            if (fh >= 0) {
                int runBit = fh & n;
                Node<K,V> lastRun = f;
                //整个 for 循环为了找到整个桶中最后连续的 fh & n 不变的结点
                for (Node<K,V> p = f.next; p != null; p = p.next) {
                    int b = p.hash & n;
                    if (b != runBit) {
                        runBit = b;
                        lastRun = p;
                    }
                }
                if (runBit == 0) {
                    ln = lastRun;
                    hn = null;
                }
                else {
                    hn = lastRun;
                    ln = null;
                }
                //如果fh&n不变的链表的runbit都是0,则nextTab[i]内元素ln前逆序,ln及其之后顺序
                //否则,nextTab[i+n]内元素全部相对原table逆序
                //这是通过一个节点一个节点的往nextTab添加
                for (Node<K,V> p = f; p != lastRun; p = p.next) {
                    int ph = p.hash; K pk = p.key; V pv = p.val;
                    if ((ph & n) == 0)
                        ln = new Node<K,V>(ph, pk, pv, ln);
                    else
                        hn = new Node<K,V>(ph, pk, pv, hn);
                }
                //把两条链表整体迁移到nextTab中
                setTabAt(nextTab, i, ln);
                setTabAt(nextTab, i + n, hn);
                //将原桶标识位已经处理
                setTabAt(tab, i, fwd);
                advance = true;
            }
            //红黑树的复制算法,不再赘述
            else if (f instanceof TreeBin) {
                TreeBin<K,V> t = (TreeBin<K,V>)f;
                TreeNode<K,V> lo = null, loTail 浅谈Java集合(底层源码解析)

Java集合---LinkedList源码解析

Java集合---LinkedList源码解析

Java集合---LinkedList源码解析

Java中的容器(集合)之HashMap源码解析

浅谈Java集合丨底层源码解析