Flink编程API设计分析
Posted 架构师
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Flink编程API设计分析相关的知识,希望对你有一定的参考价值。
原文:http://shiyanjun.cn/archives/1890.html
Flink数据流编程模型的分层设计,如下图所示:
编程API设计
对于批式Job DAG中,DataSet的类设计体系,如下图所示:
相关的类都在包org.apache.flink.api.java.operators下面,通过上图可以看出,主要分为4类:DataSource、DataSink、SingleInputOperator、TwoInputOperator。其中,DataSink并没有继承自DataSet,但是作为批式Job DAG的输出节点抽象,也还是与上图中各个Operator有直接或间接的关系。
public UnsortedGrouping<T> groupBy(int... fields) {
return new UnsortedGrouping<>(this, new Keys.ExpressionKeys<>(fields, getType()));
}
上面代码中UnsortedGrouping并不是一个DataSet实现,而是一个用来处理groupBy操作的中间结构,它继承自Grouping抽象类,类定义如下所示:
|
对于流式Job DAG中,类设计方面稍有不同,Flink使用了DataStream和StreamOperator这两个类设计体系。我们先看DataStream类设计体系,如下图所示:
DataStream表示在流式Job DAG中每一步转换操作之前与之后,都对应着一个DataStream的数据结构,它内部封装了与转换操作相关的处理逻辑,其实就是StreamOperator。对应上图中,我们举几个编写流式处理程序的例子说明:调用StreamExecutionEnvironment.readTextFile()时会生成一个DataStreamSource,调用keyBy()时会生成一个KeyedStream,调用split()时会生成一个SplitStream,调用iterate()时会生成一个IterativeStream。
下面看下StreamOperator类的设计体系,如下图所示:
编写批式Job程序,使用执行上线文环境对象ExecutionEnvironment,而流式使用的是StreamExecutionEnvironment。通过用户编程API构建好DAG Job后,都是通过调用执行上线文环境对象的execute()方法提交Job去运行。无论是批式Job还是流式Job,它们在提交执行过程中,有相同的流程,也有不同的流程,通过识别这个过程中涉及相同/不同的API对象,我们抽象出如下流程概念图:
上图中,左侧是批式Job通过API构建并提交到计算集群,基于DataSet进行编程实现,始于DataSource,终于DataSink;右侧是流式Job通过API构建并提交到计算集群,基于DataStream进行编程实现,始于DataStreamSource,终于DataStreamSink。中间部分,跨两个不同环境上下文对象是在提交Job过程中公共的抽象。
对于批式Job程序提交,核心代码如下所示:
final Plan plan = createProgramPlan(jobName);
final PipelineExecutorFactory executorFactory =
executorServiceLoader.getExecutorFactory(configuration);
CompletableFuture<JobClient> jobClientFuture = executorFactory
.getExecutor(configuration)
.execute(plan, configuration);
|
上面代码是构建生成JobGraph的主要逻辑,先是通过getExecutor()获取到一个PipelineExecutor,然后调用PipelineExecutor的execute()来构建并提交JobGraph。这里,PipelineExecutor表示执行Flink Job的方式,比如,本地执行使用LocalExecutor,或提交到YARN集群上执行使用YarnJobClusterExecutor,或提交到Kubernetes集群上执行使用KubernetesSessionClusterExecutor,等等。
无论是提交批式还是流式Job,最终都被转换成JobGraph对象,构建JobGraph的处理逻辑是完全统一的。构建JobGraph的代码逻辑,如下代码所示:
public static JobGraph getJobGraph(
Pipeline pipeline,
Configuration optimizerConfiguration,
int defaultParallelism) {
FlinkPipelineTranslator pipelineTranslator = getPipelineTranslator(pipeline);
return pipelineTranslator.translateToJobGraph(pipeline,
optimizerConfiguration,
defaultParallelism);
}
·END·