[H二分] lc1889. 装包裹的最小浪费空间(二分+思维+好题+周赛244_4)

Posted Ypuyu

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[H二分] lc1889. 装包裹的最小浪费空间(二分+思维+好题+周赛244_4)相关的知识,希望对你有一定的参考价值。

1. 题目来源

链接:1889. 装包裹的最小浪费空间

2. 题目解析

二分。

首先本题的数据范围有点意思,所有的包裹是 1e5 的,所有供应商之和1e5 的。那么总共有 n 个供应商。

方法一:

  • 用盒子二分供应商。选择每个供应商,针对每个包裹选择该刚好大于包裹的盒子,使用二分查找。
  • 但是如果针对每个盒子选供应商后再二分的话,时间复杂度显然就要爆掉了。因为等于每个供应商,我们都将所有盒子二分了一遍。那么时间复杂度就是 O ( n 2 l o g n ) O(n^2logn) O(n2logn) 的,此时 n = 1 0 5 n=10^5 n=105

方法二:

  • 用供应商二分盒子。供应商虽然很多,但总的数量是 1e5。我们针对供应商的箱子去二分出它能装的最大的盒子,那么会将这些盒子分成瑞如下图段:
    在这里插入图片描述
    显然,这样分配是最好的,代价最小。那么代价的计算就是需要统计箱子大小之和、包裹数量之和。这需要前缀和预处理,和两个下标之差即可。

  • 这样的二分是针对不同的箱子数量进行二分,时间复杂度就可以控制在 O ( n l o g n ) O(nlogn) O(nlogn) 了。


这道二分的题目还是很经典的,当一方数据较大时,应该换种解题方向,从另一方进行解题。

且本题在细节方面,需要记录上一段下标是多少,初始时 last = -1,我们让 l=last, r=n-1 此时 l 是等于 -1 的,直接使用二分第一个模板的话会导致 mid=-1+0>>1 为负下标,即出错。所以使用二分的第二个模板才行。

在处理代价方面,没有使用前缀和,而是更加直接的将初始化代价直接为负 sum,即没选盒子时,所有的箱子所造成的代价就是 -sum,再将盒子的个数乘以盒子空间将这个 -sum 慢慢抵消即可。

总的来看,不错的一道二分题目。


时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn)

空间复杂度: O ( n ) O(n) O(n)


typedef long long LL;

const LL MOD= 1e9+7, INF = 1e18;        // 伞兵的将 LL 错写为 int...

class Solution {
public:
    int minWastedSpace(vector<int>& packages, vector<vector<int>>& boxes) {
        sort(packages.begin(), packages.end());

        LL sum = 0;
        for (int x : packages) sum += x;

        int n = packages.size();
        LL res = INF;
        for (auto &e : boxes) {                         // 枚举供应商
            sort(e.begin(), e.end());
            if (e.back() < packages.back()) continue;   // 箱子无法装下包裹,该供应商不考虑
            LL t = -sum, last = -1;   // t为代价,初始为包裹总质量负值  last 为上一段的终点下标,一开始没有,为 -1
            for (auto &x : e) {
                int l = last, r = n - 1;                // l=-1
                while (l < r) {                         // l!=r,r至少是0,-1+1=0,则mid不可能为负数,在此为上取整
                    int mid = l + r + 1 >> 1;           // 如果使用二分第二个模板,则会使mid为负数,(-1+0)/2 下取整
                    if (packages[mid] > x) r = mid - 1;
                    else l = mid;
                }

                if (r == last) continue;                // 当前包裹没有覆盖任何区间,跳过即可
                t += (r - last) * x;                    // 代价计入箱子总大小
                last = r;
            }

            res = min(res, t);
        }

        if (res == INF) res = -1;

        return res % MOD;
    }
};

以上是关于[H二分] lc1889. 装包裹的最小浪费空间(二分+思维+好题+周赛244_4)的主要内容,如果未能解决你的问题,请参考以下文章

[M二分] lc275. H 指数 II(二分答案+二分下标+二分坑点)

[Luogu P1542] 包裹快递

[E二分] lc374. 猜数字大小(二分+水题)

[M二分] lc1818. 绝对差值和(二分+贪心失败+好题)

[二分搜索] lc875 Koko Eating Bananas

[M双指针] lc611. 有效三角形的个数(二分+双指针+线性扫描+算法优化)