大数据实战之mapreduce编程

Posted 进击的鱼豆腐

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据实战之mapreduce编程相关的知识,希望对你有一定的参考价值。







大数据实战之mapreduce编程


大数据实战之mapreduce编程
准备工作
大数据实战之mapreduce编程


采用IDEA作为编写mapreduce程序的编辑器,所以前期要配置好mapreduce的编程环境,这里采用maven来管理jar包。



1. 在IDEA中创建maven工程


大数据实战之mapreduce编程


2. 填写工程信息


大数据实战之mapreduce编程


3. 项目创建完成后如下,打开pom.xml文件进行填写信息


大数据实战之mapreduce编程


4. 添加如下信息,然后导入库


<build>
    <plugins>
        <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-compiler-plugin</artifactId>
            <configuration>
                <source>8</source>
                <target>8</target>
            </configuration>
        </plugin>
        <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-shade-plugin</artifactId>
            <version>3.0.0</version>
            <executions>
                <execution>
                    <phase>package</phase>
                    <goals>
                        <goal>shade</goal>
                    </goals>
                    <configuration>
                        <transformers>
                            <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                <mainClass>com.mapreduce.wordcount.Driver</mainClass><!--主类名-->
                            </transformer>
                        </transformers>
                        <artifactSet>
                        </artifactSet>
                    </configuration>
                </execution>
            </executions>
        </plugin>
    </plugins>
</build>

<dependencies>
    <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-common -->
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-common</artifactId>
        <version>3.2.1</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-hdfs -->
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-hdfs</artifactId>
        <version>3.2.1</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-mapreduce-client-core -->
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-mapreduce-client-core</artifactId>
        <version>3.2.1</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-client -->
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-hdfs-client</artifactId>
        <version>3.2.1</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-yarn-api -->
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-yarn-api</artifactId>
        <version>3.2.1</version>
    </dependency>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-mapreduce-client-jobclient</artifactId>
        <version>3.2.1</version>
        <scope>provided</scope>
    </dependency>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-mapreduce-client-common</artifactId>
        <version>3.2.1</version>
    </dependency>
    <dependency>
        <groupId>org.apache.logging.log4j</groupId>
        <artifactId>log4j-api</artifactId>
        <version>2.13.3</version>
    </dependency>
    <dependency>
        <groupId>org.apache.logging.log4j</groupId>
        <artifactId>log4j-core</artifactId>
        <version>2.13.3</version>
    </dependency>
    <dependency>
        <groupId>junit</groupId>
        <artifactId>junit</artifactId>
        <version>4.4</version>
    </dependency>
</dependencies>


5. 环境配置完后,创建如下目录结构,接下来就可以开始编写代码啦


大数据实战之mapreduce编程



大数据实战之mapreduce编程
wordcount编写
大数据实战之mapreduce编程


wordcount程序中主要由三部分组成,Mapper,Reducer和Driver。下面通过编写这三部分来一一体会三种模块的功能。




编写Mapper


MyMapper中写入的内容如下


大数据实战之mapreduce编程




编写Reducer


MyReducer中写入如下内容


大数据实战之mapreduce编程




编写Driver


MyDriver中输入内容如下


大数据实战之mapreduce编程




配置日志文件


为了方便观察运行日志,需要将日志打印在控制台显示。

1. 在resources文件夹下面创建log4j.properties文件


大数据实战之mapreduce编程


2. 填入以下内容

log4j.rootLogger=INFO, stdoutlog4j.appender.stdout=org.apache.log4j.ConsoleAppenderlog4j.appender.stdout.layout=org.apache.log4j.PatternLayoutlog4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%nlog4j.appender.logfile=org.apache.log4j.FileAppenderlog4j.appender.logfile.File=target/spring.loglog4j.appender.logfile.layout=org.apache.log4j.PatternLayoutlog4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

大数据实战之mapreduce编程



准备输入文件

在resources文件夹下面创建input文件夹,创建两个文件word1.txt,word2.txt

内容如下:

大数据实战之mapreduce编程

大数据实战之mapreduce编程


大数据实战之mapreduce编程
本地运行
大数据实战之mapreduce编程


1. 运行main函数


大数据实战之mapreduce编程


2. 控制台运行结果


大数据实战之mapreduce编程


3. 查看resources下生成的output文件夹的结果,可以验证与上篇推断的结果一致,如果需要再次运行,需要更改输出目录或删除生成的output文件夹


大数据实战之mapreduce编程




以上就是本地运行mapreduce程序的流程,下一节将尝试如何将程序打包上传至集群运行,跟上节奏一起来看看吧。大数据实战之mapreduce编程



本章内容已打包

wordcount

即可获取项目代码!

往期推荐





大数据实战之mapreduce编程

扫描二维码获取

更多精彩

大数据实战之mapreduce编程

进击的鱼豆腐




点个在看再去干饭

以上是关于大数据实战之mapreduce编程的主要内容,如果未能解决你的问题,请参考以下文章

大数据项目实战之Python金融应用编程(数据分析定价与量化投资)

大数据实战之spark安装部署

电商大数据项目-推荐系统实战之推荐算法

电商大数据项目-推荐系统实战之实时分析以及离线分析

大数据实战之千万量级小说网站项目开发(存储复杂搜索推荐分析)

大数据项目实战之在线教育(01数仓需求)