VGG:用于大规模图像识别的超深卷积网络

Posted 三维重建学习笔记

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了VGG:用于大规模图像识别的超深卷积网络相关的知识,希望对你有一定的参考价值。



Abstract

main contribution:使用非常小的卷积滤波器(3x3)增加网络的深度,通过将深度推到16-19层,显著提升了网络的效果

achievement:在2014ImageNet挑战赛上面分别获得定位和分类的第一名和第二名,可以很好的推广到其它数据集

 

Convnet Configuration

Input224 x 224 RGB图像,预处理是每个像素减去通过训练集计算的平均RGB


VGG:用于大规模图像识别的超深卷积网络 

通过将一个7x7的卷积层替换为33x3的卷积层,有两个好处。第一,加入了三个线性层而不是一个单一的层,使得决策函数更具有鉴别性。其次,减少了参数的数量,假设33x3的卷积层,输入输出都是C通道,一共有3*(3*3*C*C) = 27C^2个参数。但是对于一个7x7的卷积层,一共有49C^2个参数。


Classification Experiments

 

 

Conclusion

网络结构非常简单,整个网络都使用了相同大小的卷积核(3x3)和最大池化尺寸(2x2),减少了网络参数,但是仍然会导致占用很多内存。可以根据论文里面的网络配置进行复现,也可以直接调用torchvision里面的模型,如下所示:

class VGG(nn.Module):  def __init__(self, features, num_classes=1000, init_weights=True): super(VGG, self).__init__() self.features = features self.avgpool = nn.AdaptiveAvgPool2d((7, 7)) self.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, num_classes), ) if init_weights: self._initialize_weights()  def forward(self, x): x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x  def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) def make_layers(cfg, batch_norm=False): layers = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) cfgs = { 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],} def _vgg(arch, cfg, batch_norm, pretrained, progress, **kwargs): if pretrained: kwargs['init_weights'] = False model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs) if pretrained: state_dict = load_state_dict_from_url(model_urls[arch], progress=progress) model.load_state_dict(state_dict) return model def vgg16(pretrained=False, progress=True, **kwargs): r"""VGG 16-layer model (configuration "D") `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_  Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg16', 'D', False, pretrained, progress, **kwargs)  def vgg16_bn(pretrained=False, progress=True, **kwargs): r"""VGG 16-layer model (configuration "D") with batch normalization `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_  Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg16_bn', 'D', True, pretrained, progress, **kwargs)