Shor‘s algorithm

Posted 安徽思远

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Shor‘s algorithm相关的知识,希望对你有一定的参考价值。

周期函数:
f ( x ) = a x   m o d   N f(x) = a^x \\bmod{N} f(x)=axmodN
在这里插入图片描述
问题:如何找到一个周期函数的周期r?

Shor’s algorithm

Shor’s solution中函数U: U ∣ y ⟩ ≡ ∣ a y   m o d   N ⟩ U|y\\rangle \\equiv |ay \\bmod N \\rangle UyaymodN

接下来,我们可以多次作用U,便可以得到周期函数f的结果:
U ∣ 1 ⟩ = ∣ 3 ⟩ U 2 ∣ 1 ⟩ = ∣ 9 ⟩ U 3 ∣ 1 ⟩ = ∣ 27 ⟩ ⋮ U ( r − 1 ) ∣ 1 ⟩ = ∣ 12 ⟩ U r ∣ 1 ⟩ = ∣ 1 ⟩ \\begin{aligned} U|1\\rangle &= |3\\rangle & \\\\ U^2|1\\rangle &= |9\\rangle \\\\ U^3|1\\rangle &= |27\\rangle \\\\ & \\vdots \\\\ U^{(r-1)}|1\\rangle &= |12\\rangle \\\\ U^r|1\\rangle &= |1\\rangle \\end{aligned} U1U21U31U(r1)1Ur1=3=9=27=12=1

因此第一个想法便是构建叠加态,然后测量相同f(x)的x的叠加态。

So a superposition of the states in this cycle ( ∣ u 0 ⟩ ) (|u_0\\rangle) (u0) would be an eigenstate of U:

∣ u 0 ⟩ = 1 r ∑ k = 0 r − 1 ∣ a k   m o d   N ⟩ |u_0\\rangle = \\tfrac{1}{\\sqrt{r}}\\sum_{k=0}^{r-1}{|a^k \\bmod N\\rangle} u0=r 1k=0r1akmodN

This eigenstate has an eigenvalue of 1, which isn’t very interesting. A more interesting eigenstate could be one in which the phase is different for each of these computational basis states. Specifically, let’s look at the case in which the phase of the kth state is proportional to k:

∣ u 1 ⟩ = 1 r ∑ k = 0 r − 1 e − 2 π i k r ∣ a k   m o d   N ⟩ U ∣ u 1 ⟩ = e 2 π i r ∣ u 1 ⟩ \\begin{aligned} |u_1\\rangle &= \\tfrac{1}{\\sqrt{r}}\\sum_{k=0}^{r-1}{e^{-\\tfrac{2\\pi i k}{r}}|a^k \\bmod N\\rangle}\\\\[10pt] U|u_1\\rangle &= e^{\\tfrac{2\\pi i}{r}}|u_1\\rangle \\end{aligned} u1Uu1=r 1k=0r1er2πikakmodN=er2πiu1

∣ u s ⟩ = 1 r ∑ k = 0 r − 1 e − 2 π i s k r ∣ a k   m o d   N ⟩ U ∣ u s ⟩ = e 2 π i s r ∣ u s ⟩ \\begin{aligned} |u_s\\rangle &= \\tfrac{1}{\\sqrt{r}}\\sum_{k=0}^{r-1}{e^{-\\tfrac{2\\pi i s k}{r}}|a^k \\bmod N\\rangle}\\\\[10pt] U|u_s\\rangle &= e^{\\tfrac{2\\pi i s}{r}}|u_s\\rangle \\end{aligned} usUus=r 1k=0r1er2πiskakmodN=er2πisus

We now have a unique eigenstate for each integer value of s where
0 ≤ s ≤ r − 1 0 \\leq s \\leq r-1 0sr1. Very conveniently, if we sum up all these eigenstates, the different phases cancel out all computational basis states except ∣ 1 ⟩ |1\\rangle 1:

1 r ∑ s = 0 r − 1 ∣ u s ⟩ = ∣ 1 ⟩ \\tfrac{1}{\\sqrt{r}}\\sum_{s=0}^{r-1} |u_s\\rangle = |1\\rangle r 1s=0r1us=1

Example:
在这里插入图片描述
在通过U进行变化操作之后,我们得到的结果为:
∣ 1 ⟩ = 1 r ( ∣ u 0 ⟩ + ∣ u 1 ⟩ + ⋯ + ∣ u r − 1 ⟩ ) |1\\rangle=\\frac{1}{\\sqrt{r}}\\left(\\left|u_{0}\\right\\rangle+\\left|u_{1}\\right\\rangle+\\cdots+\\left|u_{r-1}\\right\\rangle\\right) 1=r

(c)2006-2024 SYSTEM All Rights Reserved IT常识