设计模式概述

Posted 顧棟

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了设计模式概述相关的知识,希望对你有一定的参考价值。

设计模式概述

设计模式遵循的原则

1、开闭原则(Open Close Principle)

开闭原则就是说对扩展开放,对修改关闭。在程序需要进行拓展的时候,不能去修改原有的代码,实现一个热插拔的效果。所以一句话概括就是:为了使程序的扩展性好,易于维护和升级。想要达到这样的效果,我们需要使用接口和抽象类。interface abstract class

2、里氏代换原则(Liskov Substitution Principle)

里氏代换原则(Liskov Substitution Principle LSP)面向对象设计的基本原则之一。 里氏代换原则中说,任何基类可以出现的地方,子类一定可以出现。 LSP是继承复用的基石,只有当衍生类可以替换掉基类,软件单位的功能不受到影响时,基类才能真正被复用,而衍生类也能够在基类的基础上增加新的行为。里氏代换原则是对“开-闭”原则的补充。实现“开-闭”原则的关键步骤就是抽象化。而基类与子类的继承关系就是抽象化的具体实现,所以里氏代换原则是对实现抽象化的具体步骤的规范。主要是继承。

3、依赖倒转原则(Dependence Inversion Principle)

这个是开闭原则的基础,具体内容:真对接口编程,依赖于抽象而不依赖于具体。说白了,就是要针对接口编程,不要对实现编程

A. 高层模块不应该依赖底层模块。两个都应该依赖抽象

B. 抽象不应该依赖细节。细节应该依赖抽象

除了更改实例化的地方,程序其他处不需要改变。

4、接口隔离原则(Interface Segregation Principle)

这个原则的意思是:使用多个隔离的接口,比使用单个接口要好。还是一个降低类之间的耦合度的意思,从这儿我们看出,其实设计模式就是一个软件的设计思想,从大型软件架构出发,为了升级和维护方便。所以上文中多次出现:降低依赖,降低耦合。封装

5、迪米特法则(最少知道原则)(Demeter Principle)

为什么叫最少知道原则,就是说:一个实体应当尽量少的与其他实体之间发生相互作用,使得系统功能模块相对独立。

6、合成复用原则(Composite Reuse Principle)

原则是尽量使用合成/聚合的方式,而不是使用继承。合成复用原则是通过将已有的对象纳入新对象中,作为新对象的成员对象来实现的,新对象可以调用已有对象的功能,从而达到复用。

7、单一原则(Single Responsibility Principle)

负责类的粒度大小。简单的说就是一个类或者方法让它负责一种功能。封装

设计原则一句话归纳目的
开闭原则对扩展开放,对修改关闭降低维护带来的新风险
依赖倒置原则高层不应该依赖低层,要面向接口编程更利于代码结构的升级扩展
单一职责原则一个类只干一件事,实现类要单一便于理解,提高代码的可读性
接口隔离原则一个接口只干一件事,接口要精简单一功能解耦,高聚合、低耦合
迪米特法则不该知道的不要知道,一个类应该保持对其它对象最少的了解,降低耦合度只和朋友交流,不和陌生人说话,减少代码臃肿
里氏替换原则不要破坏继承体系,子类重写方法功能发生改变,不应该影响父类方法的含义防止继承泛滥
合成复用原则尽量使用组合或者聚合关系实现代码复用,少使用继承降低代码耦合

设计模式分类

创建型模式

主要特点是将对象的创建与使用分离

创建型模式分为以下5种。

  1. 单例(Singleton)模式:某个类只能生成一个实例,该类提供了一个全局访问点供外部获取该实例,其拓展是有限多例模式。
  2. 原型(Prototype)模式:将一个对象作为原型,通过对其进行复制而克隆出多个和原型类似的新实例。
  3. 工厂方法(FactoryMethod)模式:定义一个用于创建产品的接口,由子类决定生产什么产品。
  4. 抽象工厂(AbstractFactory)模式:提供一个创建产品族的接口,其每个子类可以生产一系列相关的产品。
  5. 建造者(Builder)模式:将一个复杂对象分解成多个相对简单的部分,然后根据不同需要分别创建它们,最后构建成该复杂对象。

结构型模式

描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。

结构型模式分为以下 7 种:

  1. 代理(Proxy)模式:为某对象提供一种代理以控制对该对象的访问。即客户端通过代理间接地访问该对象,从而限制、增强或修改该对象的一些特性。
  2. 适配器(Adapter)模式:将一个类的接口转换成客户希望的另外一个接口,使得原本由于接口不兼容而不能一起工作的那些类能一起工作。
  3. 桥接(Bridge)模式:将抽象与实现分离,使它们可以独立变化。它是用组合关系代替继承关系来实现的,从而降低了抽象和实现这两个可变维度的耦合度。
  4. 装饰(Decorator)模式:动态地给对象增加一些职责,即增加其额外的功能。
  5. 外观(Facade)模式:为多个复杂的子系统提供一个一致的接口,使这些子系统更加容易被访问。
  6. 享元(Flyweight)模式:运用共享技术来有效地支持大量细粒度对象的复用。
  7. 组合(Composite)模式:将对象组合成树状层次结构,使用户对单个对象和组合对象具有一致的访问性。

行为型模式

用于描述程序在运行时的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。

  1. 模板方法(Template Method)模式:定义一个操作中的算法骨架,将算法的一些步骤延迟到子类中执行,使得子类在可以不改变该算法结构的情况下重写该算法的某些特定步骤。
  2. 策略(Strategy)模式:定义了一系列算法,并将每个算法封装起来,使它们可以相互替换,且算法的改变不会影响使用算法的用户。
  3. 命令(Command)模式:把一个请求封装为一个对象,将发出请求的责任和执行请求的责任分割开。
  4. 职责链(Chain of Responsibility)模式:把请求从对象链中的一个对象传到下一个对象,直到请求被响应处理为止。通过这种方式去除对象之间的耦合。
  5. 状态(State)模式:允许一个对象在其内部状态发生改变时改变对象的行为能力。
  6. 观察者(Observer)模式:多个对象间存在一对多关系,当一个对象发生改变时,把这种改变通知给其他多个对象,从而影响其他对象的行为。
  7. 中介者(Mediator)模式:定义一个中介对象来简化原有对象之间的交互关系,降低系统中对象间的耦合度。
  8. 迭代器(Iterator)模式:提供一种方法来顺序访问聚合对象中的一系列数据,而不暴露聚合对象的内部表示。
  9. 访问者(Visitor)模式:在不改变集合元素的前提下,为一个集合中的每个元素提供多种访问方式,即每个元素可以被多个访问者对象访问。
  10. 备忘录(Memento)模式:在不破坏封装性的前提下,获取并保存一个对象的内部状态,以便以后恢复它。
  11. 解释器(Interpreter)模式:提供如何定义语言的文法,以及对语言句子的解释方法,即解释器。

模板方法模式和解释器模式是类行为型模式,其他的全部属于对象行为型模式。

模式场景概述

  • 抽象工厂模式

    • 当需要创建的对象是一系列相互关联或相互依赖的产品族时,如电器工厂中的电视机、洗衣机、空调等。
    • 系统中有多个产品族,但每次只使用其中的某一族产品。如有人只喜欢穿某一个品牌的衣服和鞋。
    • 系统中提供了产品的类库,且所有产品的接口相同,客户端不依赖产品实例的创建细节和内部结构。
  • 建造者模式

    • 创建的对象较复杂,由多个部件构成,各部件面临着复杂的变化,但构件间的建造顺序是稳定的。
    • 创建复杂对象的算法独立于该对象的组成部分以及它们的装配方式,即产品的构建过程和最终的表示是独立的。
  • 工厂方法

    • 客户只知道创建产品的工厂名,而不知道具体的产品名。如 TCL 电视工厂、海信电视工厂等。
    • 创建对象的任务由多个具体子工厂中的某一个完成,而抽象工厂只提供创建产品的接口。
    • 客户不关心创建产品的细节,只关心产品的品牌。
  • 原型模式

    • 对象之间相同或相似,即只是个别的几个属性不同的时候。
    • 对象的创建过程比较麻烦,但复制比较简单的时候。
  • 单例模式

    • 在应用场景中,某类只要求生成一个对象的时候,如一个班中的班长、每个人的身份证号等。
    • 当对象需要被共享的场合。由于单例模式只允许创建一个对象,共享该对象可以节省内存,并加快对象访问速度。如 Web 中的配置对象、数据库的连接池等。
    • 当某类需要频繁实例化,而创建的对象又频繁被销毁的时候,如多线程的线程池、网络连接池等。
  • 适配器模式

    • 以前开发的系统存在满足新系统功能需求的类,但其接口同新系统的接口不一致。
    • 使用第三方提供的组件,但组件接口定义和自己要求的接口定义不同。
  • 桥接模式

    • 当一个类存在两个独立变化的维度,且这两个维度都需要进行扩展时。
    • 当一个系统不希望使用继承或因为多层次继承导致系统类的个数急剧增加时。
    • 当一个系统需要在构件的抽象化角色和具体化角色之间增加更多的灵活性时。
  • 组合模式

    • 在需要表示一个对象整体与部分的层次结构的场合。
    • 要求对用户隐藏组合对象与单个对象的不同,用户可以用统一的接口使用组合结构中的所有对象的场合。
  • 装饰者模式

    • 当需要给一个现有类添加附加职责,而又不能采用生成子类的方法进行扩充时。例如,该类被隐藏或者该类是终极类或者采用继承方式会产生大量的子类。
    • 当需要通过对现有的一组基本功能进行排列组合而产生非常多的功能时,采用继承关系很难实现,而采用装饰模式却很好实现。
    • 当对象的功能要求可以动态地添加,也可以再动态地撤销时。
  • 外观模式

    • 对分层结构系统构建时,使用外观模式定义子系统中每层的入口点可以简化子系统之间的依赖关系。
    • 当一个复杂系统的子系统很多时,外观模式可以为系统设计一个简单的接口供外界访问。
    • 当客户端与多个子系统之间存在很大的联系时,引入外观模式可将它们分离,从而提高子系统的独立性和可移植性。
  • 享元模式

    • 系统中存在大量相同或相似的对象,这些对象耗费大量的内存资源。
    • 大部分的对象可以按照内部状态进行分组,且可将不同部分外部化,这样每一个组只需保存一个内部状态。
    • 由于享元模式需要额外维护一个保存享元的数据结构,所以应当在有足够多的享元实例时才值得使用享元模式。
  • 代理模式

    • 远程代理,这种方式通常是为了隐藏目标对象存在于不同地址空间的事实,方便客户端访问。例如,用户申请某些网盘空间时,会在用户的文件系统中建立一个虚拟的硬盘,用户访问虚拟硬盘时实际访问的是网盘空间。【WebService,客户端可以调用代理解决远程访问问题】
    • 虚拟代理,这种方式通常用于要创建的目标对象开销很大时。例如,下载一幅很大的图像需要很长时间,因某种计算比较复杂而短时间无法完成,这时可以先用小比例的虚拟代理替换真实的对象,消除用户对服务器慢的感觉。【比如html网页的图片,代理存储的是真实图片的路径和尺寸】
    • 安全代理,这种方式通常用于控制不同种类客户对真实对象的访问权限。
    • 智能指引,主要用于调用目标对象时,代理附加一些额外的处理功能。例如,增加计算真实对象的引用次数的功能,这样当该对象没有被引用时,就可以自动释放它。【如计算机真实对象的引用次数,代理在访问一个对象的时候回附加一些内务处理,检查对象是否被锁定、是否该释放、是否该装入内存等等】
    • 延迟加载,指为了提高系统的性能,延迟对目标的加载。例如,Hibernate中就存在属性的延迟加载和关联表的延时加载。
  • 观察者模式

    • 对象间存在一对多关系,一个对象的状态发生改变会影响其他对象。
    • 当一个抽象模型有两个方面,其中一个方面依赖于另一方面时,可将这二者封装在独立的对象中以使它们可以各自独立地改变和复用。
  • 模板方法

    • 算法的整体步骤很固定,但其中个别部分易变时,这时候可以使用模板方法模式,将容易变的部分抽象出来,供子类实现。
    • 当多个子类存在公共的行为时,可以将其提取出来并集中到一个公共父类中以避免代码重复。首先,要识别现有代码中的不同之处,并且将不同之处分离为新的操作。最后,用一个调用这些新的操作的模板方法来替换这些不同的代码。
    • 当需要控制子类的扩展时,模板方法只在特定点调用钩子操作,这样就只允许在这些点进行扩展。
  • 命令模式

    • 当系统需要将请求调用者与请求接收者解耦时,命令模式使得调用者和接收者不直接交互。
    • 当系统需要随机请求命令或经常增加或删除命令时,命令模式比较方便实现这些功能。
    • 当系统需要执行一组操作时,命令模式可以定义宏命令来实现该功能。
    • 当系统需要支持命令的撤销(Undo)操作和恢复(Redo)操作时,可以将命令对象存储起来,采用备忘录模式来实现。
  • 状态模式

    • 当一个对象的行为取决于它的状态,并且它必须在运行时根据状态改变它的行为时,就可以考虑使用状态模式。
    • 一个操作中含有庞大的分支结构,并且这些分支决定于对象的状态时。
  • 职责链模式

    • 有多个对象可以处理一个请求,哪个对象处理该请求由运行时刻自动确定。
    • 可动态指定一组对象处理请求,或添加新的处理者。
    • 在不明确指定请求处理者的情况下,向多个处理者中的一个提交请求。
  • 解释器模式

    • 当语言的文法较为简单,且执行效率不是关键问题时。
    • 当问题重复出现,且可以用一种简单的语言来进行表达时。
    • 当一个语言需要解释执行,并且语言中的句子可以表示为一个抽象语法树的时候,如 XML 文档解释。
  • 中介者模式

    • 当对象之间存在复杂的网状结构关系而导致依赖关系混乱且难以复用时。
    • 当想创建一个运行于多个类之间的对象,又不想生成新的子类时。
  • 访问者模式

    • 对象结构相对稳定,但其操作算法经常变化的程序。
    • 对象结构中的对象需要提供多种不同且不相关的操作,而且要避免让这些操作的变化影响对象的结构。
    • 对象结构包含很多类型的对象,希望对这些对象实施一些依赖于其具体类型的操作。
  • 策略模式

    • 一个系统需要动态地在几种算法中选择一种时,可将每个算法封装到策略类中。
    • 一个类定义了多种行为,并且这些行为在这个类的操作中以多个条件语句的形式出现,可将每个条件分支移入它们各自的策略类中以代替这些条件语句。
    • 系统中各算法彼此完全独立,且要求对客户隐藏具体算法的实现细节时。
    • 系统要求使用算法的客户不应该知道其操作的数据时,可使用策略模式来隐藏与算法相关的数据结构。
    • 多个类只区别在表现行为不同,可以使用策略模式,在运行时动态选择具体要执行的行为。
  • 备忘录模式

    • 需要保存与恢复数据的场景,如玩游戏时的中间结果的存档功能。
    • 需要提供一个可回滚操作的场景,如 Word、记事本、Photoshop,Eclipse 等软件在编辑时按 Ctrl+Z 组合键,还有数据库中事务操作。
  • 迭代器模式。

    • 当需要为聚合对象提供多种遍历方式时。
    • 当需要为遍历不同的聚合结构提供一个统一的接口时。
    • 当访问一个聚合对象的内容而无须暴露其内部细节的表示时。

专栏跳转

单例模式
访问者模式
抽象工厂模式
适配器模式
桥接模式
建造者模式
责任链模式
命令模式
组合模式
装饰模式
门面模式
工厂方法模式
享元模式
解释器模式
迭代器模式
中介者模式
备忘录模式
观察者模式
原型模式
代理模式
状态模式
策略模式
模板方法模式

其他专栏

Kafka专栏
Ranger专栏
数据结构专栏


文章主要参考《C语言中文网》设计模式的相关内容

以上是关于设计模式概述的主要内容,如果未能解决你的问题,请参考以下文章

设计模式概述

设计模式和软件设计原则概述

设计模式概述 + 分类

[高级]设计模式——设计模式概述

[高级]设计模式——设计模式概述

一设计模式概述