十一.PCA案例分析及小结

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了十一.PCA案例分析及小结相关的知识,希望对你有一定的参考价值。

参考技术A PCA用做噪音过滤的方法——任何成分的方差都远大于噪音的方差,相对于噪音,主成分相对不受到影响。

因此,仅利用主成分的最大子集重构该数据,那么应该就可以实现选择性保留信号并且过滤噪音。

首先,定义一个创建输入的函数用于显示无噪音数据集:

创造一组包含噪声的手写数字图像集:

用噪音数据集训练一个PCA,要求投影后保留50%的方差:

这里的50%的方差对应12个主成分。接下来利用逆变换重构过滤后的手写数字:

这个信号保留/噪音过滤性质是PCA一种非常有用的特征选择方式。

对于高维数据,可以利用PCA该性质在将数据投影到低维空间,然后进行分类器训练,在此过程中,该分类器将自动过滤输入数据中的随即噪音。

主成分分析是一个应用广泛的无监督方法,适用于数据可视化、噪音过滤、特征抽取和特征工程领域,主要用于数据降维。

对于高维数据,可以从PCA分析开始,可视化点间方差关系。

缺点:

(1)容易受到异常数据点影响,介于此,一些优化方法也被开发出来,如RandomizedPCA和SparePCA:

RandomizedPCA使用了一个非确定方法,快速近似计算一个高维度数据的前几个主成分;

SparePCA引入正则项来保证成分的稀疏性。

(2)除此之外,PCA一般只能处理线性分布的数据。

对于非线性数据,通常选择另一种方法——流形学习。

主成分分析(PCA)数学原理详解

由于原文中的公式符号无法显示,因此本文重新整理了一下文章内容,方便学习。


PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理。这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么。

当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导。希望读者在看完这篇文章后能更好的明白PCA的工作原理。

1 数据的向量表示及降维问题

一般情况下,在数据挖掘和机器学习中,数据被表示为向量。例如某个淘宝店2012年全年的流量及交易情况可以看成一组记录的集合,其中每一天的数据是一条记录,格式如下:

(日期, 浏览量, 访客数, 下单数, 成交数, 成交金额)

其中“日期”是一个记录标志而非度量值,而数据挖掘关心的大多是度量值,因此如果我们忽略日期这个字段后,我们得到一组记录,每条记录可以被表示为一个五维向量,其中一条看起来大约是这个样子:

( 500 , 240 , 25 , 13 , 2312.15 ) T (500,240,25,13,2312.15)^\\mathsf{T} (500,240,25,13,2312.15)T

注意这里我用了转置,因为习惯上使用列向量表示一条记录(后面会看到原因),本文后面也会遵循这个准则。不过为了方便有时我会省略转置符号,但我们说到向量默认都是指列向量。

我们当然可以对这一组五维向量进行分析和挖掘,不过我们知道,很多机器学习算法的复杂度和数据的维数有着密切关系,甚至与维数呈指数级关联。当然,这里区区五维的数据,也许还无所谓,但是实际机器学习中处理成千上万甚至几十万维的情况也并不罕见,在这种情况下,机器学习的资源消耗是不可接受的,因此我们必须对数据进行降维。

降维当然意味着信息的丢失,不过鉴于实际数据本身常常存在的相关性,我们可以想办法在降维的同时将信息的损失尽量降低。

举个例子,假如某学籍数据有两列M和F,其中M列的取值是如何此学生为男性取值1,为女性取值0;而F列是学生为女性取值1,男性取值0。此时如果我们统计全部学籍数据,会发现对于任何一条记录来说,当M为1时F必定为0,反之当M为0时F必定为1。在这种情况下,我们将M或F去掉实际上没有任何信息的损失,因为只要保留一列就可以完全还原另一列。

当然上面是一个极端的情况,在现实中也许不会出现,不过类似的情况还是很常见的。例如上面淘宝店铺的数据,从经验我们可以知道,“浏览量”和“访客数”往往具有较强的相关关系,而“下单数”和“成交数”也具有较强的相关关系。这里我们非正式的使用“相关关系”这个词,可以直观理解为“当某一天这个店铺的浏览量较高(或较低)时,我们应该很大程度上认为这天的访客数也较高(或较低)”。后面的章节中我们会给出相关性的严格数学定义。

这种情况表明,如果我们删除浏览量或访客数其中一个指标,我们应该期待并不会丢失太多信息。因此我们可以删除一个,以降低机器学习算法的复杂度。

上面给出的是降维的朴素思想描述,可以有助于直观理解降维的动机和可行性,但并不具有操作指导意义。例如,我们到底删除哪一列损失的信息才最小?亦或根本不是单纯删除几列,而是通过某些变换将原始数据变为更少的列但又使得丢失的信息最小?到底如何度量丢失信息的多少?如何根据原始数据决定具体的降维操作步骤?

要回答上面的问题,就要对降维问题进行数学化和形式化的讨论。而PCA是一种具有严格数学基础并且已被广泛采用的降维方法。下面我不会直接描述PCA,而是通过逐步分析问题,让我们一起重新“发明”一遍PCA。

2 向量的表示及基变换

既然我们面对的数据被抽象为一组向量,那么下面有必要研究一些向量的数学性质。而这些数学性质将成为后续导出PCA的理论基础。

2.1 内积与投影

下面先来看一个高中就学过的向量运算:内积。两个维数相同的向量的内积被定义为:

( a 1 , a 2 , ⋯   , a n ) T ⋅ ( b 1 , b 2 , ⋯   , b n ) T = a 1 b 1 + a 2 b 2 + ⋯ + a n b n (a_1,a_2,\\cdots,a_n)^\\mathsf{T}\\cdot (b_1,b_2,\\cdots,b_n)^\\mathsf{T}=a_1b_1+a_2b_2+\\cdots+a_nb_n (a1,a2,,an)T(b1,b2,,bn)T=a1b1+a2b2++anbn

内积运算将两个向量映射为一个实数。其计算方式非常容易理解,但是其意义并不明显。下面我们分析内积的几何意义。假设A和B是两个n维向量,我们知道n维向量可以等价表示为n维空间中的一条从原点发射的有向线段,为了简单起见我们假设A和B均为二维向量,则 A = ( x 1 , y 1 ) A=(x_1,y_1) A=(x1,y1) B = ( x 2 , y 2 ) B=(x_2,y_2) B=(x2,y2)。则在二维平面上A和B可以用两条发自原点的有向线段表示,见下图:

好,现在我们从A点向B所在直线引一条垂线。我们知道垂线与B的交点叫做A在B上的投影,再设A与B的夹角是a,则投影的矢量长度为 ∣ A ∣ c o s ( a ) |A|cos(a) Acos(a),其中 ∣ A ∣ = x 1 2 + y 1 2 |A|=\\sqrt{x_1^2+y_1^2} A=x12+y12 是向量A的模,也就是A线段的标量长度。

注意这里我们专门区分了矢量长度和标量长度,标量长度总是大于等于0,值就是线段的长度;而矢量长度可能为负,其绝对值是线段长度,而符号取决于其方向与标准方向相同或相反。

到这里还是看不出内积和这东西有什么关系,不过如果我们将内积表示为另一种我们熟悉的形式:

A ⋅ B = ∣ A ∣ ∣ B ∣ c o s ( a ) A\\cdot B=|A||B|cos(a) AB=ABcos(a)

现在事情似乎是有点眉目了:A与B的内积等于A到B的投影长度乘以B的模。再进一步,如果我们假设B的模为1,即让 ∣ B ∣ = 1 |B|=1 B=1,那么就变成了:

A ⋅ B = ∣ A ∣ c o s ( a ) A\\cdot B=|A|cos(a) AB=Acos(a)

也就是说,设向量B的模为1,则A与B的内积值等于A向B所在直线投影的矢量长度! 这就是内积的一种几何解释,也是我们得到的第一个重要结论。在后面的推导中,将反复使用这个结论。

2.2 基

下面我们继续在二维空间内讨论向量。上文说过,一个二维向量可以对应二维笛卡尔直角坐标系中从原点出发的一个有向线段。例如下面这个向量:

在代数表示方面,我们经常用线段终点的点坐标表示向量,例如上面的向量可以表示为(3,2),这是我们再熟悉不过的向量表示。

不过我们常常忽略,只有一个(3,2)本身是不能够精确表示一个向量的。 我们仔细看一下,这里的3实际表示的是向量在x轴上的投影值是3,在y轴上的投影值是2。也就是说我们其实隐式引入了一个定义:以x轴和y轴上正方向长度为1的向量为标准。那么一个向量(3,2)实际是说在x轴投影为3而y轴的投影为2。注意投影是一个矢量,所以可以为负。

更正式的说,向量(x,y)实际上表示线性组合:

x ( 1 , 0 ) T + y ( 0 , 1 ) T x(1,0)^\\mathsf{T}+y(0,1)^\\mathsf{T} x(1,0)T+y(0,1)T

不难证明所有二维向量都可以表示为这样的线性组合。此处(1,0)和(0,1)叫做二维空间中的一组基。

所以,要准确描述向量,首先要确定一组基,然后给出在基所在的各个直线上的投影值,就可以了。 只不过我们经常省略第一步,而默认以(1,0)和(0,1)为基。

我们之所以默认选择(1,0)和(0,1)为基,当然是比较方便,因为它们分别是x和y轴正方向上的单位向量,因此就使得二维平面上点坐标和向量一一对应,非常方便。但实际上任何两个线性无关的二维向量都可以成为一组基,所谓线性无关在二维平面内可以直观认为是两个不在一条直线上的向量。

例如,(1,1)和(-1,1)也可以成为一组基。一般来说,我们希望基的模是1,因为从内积的意义可以看到,如果基的模是1,那么就可以方便的用向量点乘基而直接获得其在新基上的坐标了!实际上,对应任何一个向量我们总可以找到其同方向上模为1的向量,只要让两个分量分别除以模就好了。例如,上面的基可以变为 ( 1 2 , 1 2 ) (\\cfrac{1}{\\sqrt{2}},\\cfrac{1}{\\sqrt{2}}) (2 1,2 1) ( − 1 2 , 1 2 ) (-\\cfrac{1}{\\sqrt{2}},\\cfrac{1}{\\sqrt{2}}) (2 1,2 1)

现在,我们想获得(3,2)在新基上的坐标,即在两个方向上的投影矢量值,那么根据内积的几何意义,我们只要分别计算(3,2)和两个基的内积,不难得到新的坐标为 ( 5 2 , − 1 2 ) (\\cfrac{5}{\\sqrt{2}},-\\cfrac{1}{\\sqrt{2}}) (2 5,2 1)。下图给出了新的基以及(3,2)在新基上坐标值的示意图:

另外这里要注意的是,我们列举的例子中基是正交的(即内积为0,或直观说相互垂直),但可以成为一组基的唯一要求就是线性无关,非正交的基也是可以的。不过因为正交基有较好的性质,所以一般使用的基都是正交的。

2.3 基变换的矩阵表示

下面我们找一种简便的方式来表示基变换。还是拿上面的例子,想一下,将(3,2)变换为新基上的坐标,就是用(3,2)与第一个基做内积运算,作为第一个新的坐标分量,然后用(3,2)与第二个基做内积运算,作为第二个新坐标的分量。实际上,我们可以用矩阵相乘的形式简洁的表示这个变换:

( 1 / 2 1 / 2 − 1 / 2 1 / 2 ) ( 3 2 ) = ( 5 / 2 − 1 / 2 ) \\begin{pmatrix} 1/\\sqrt{2} & 1/\\sqrt{2} \\\\ -1/\\sqrt{2} & 1/\\sqrt{2} \\end{pmatrix} \\begin{pmatrix} 3 \\\\ 2 \\end{pmatrix} = \\begin{pmatrix} 5/\\sqrt{2} \\\\ -1/\\sqrt{2} \\end{pmatrix} (1/2 1/2 1/2 主成分分析(PCA)原理及R语言实现

javaSE (二十一)字符流IO流小结案例

PCA主成分分析---介绍说明

PCA图像数据降维及重构误差分析实战并使用TSNE进行异常数据可视化分析

主成分分析(PCA)原理及R语言实现

[python机器学习及实践]Sklearn实现主成分分析(PCA)