JVM的内存结构及GC机制
Posted 小图包
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了JVM的内存结构及GC机制相关的知识,希望对你有一定的参考价值。
JVM结构
JVM包含四个部分
1 类加载器(ClassLoader):负责将class类加载到JVM中,关于类加载机制
2 执行引擎: 负责执行class文件中的字节码指令
3 本地库接口:主要是调用C或者C++实现的本地方法以及返回的结果
4 内存区域是运行时数据区,是JVM运行时的内存分配区域,它分为六个区域,如下图
1.方法区(Method Area):方法区存放了要加载的类的信息(如类名、修饰符等)、静态变量、构造函数、final定义的常量、类中的字段和方法等信息。方法区是全局共享的,在一定条件下也会被GC。当方法区超过它允许的大小时,就会抛出OutOfMemory:PermGen Space异常。
在Hotspot虚拟机中,这块区域对应持久代(Permanent Generation),一般来说,方法区上执行GC的情况很少,因此方法区被称为持久代的原因之一,但这并不代表方法区上完全没有GC,其上的GC主要针对常量池的回收和已加载类的卸载。在方法区上进行GC,条件相当苛刻而且困难。
运行时常量池(Runtime Constant Pool)是方法区的一部分,用于存储编译器生成的常量和引用。一般来说,常量的分配在编译时就能确定,但也不全是,也可以存储在运行时期产生的常量。比如String类的intern()方法,作用是String类维护了一个常量池,如果调用的字符”hello”已经在常量池中,则直接返回常量池中的地址,否则新建一个常量加入池中,并返回地址。
2 Java虚拟机栈(Java Virtual Machine Stacks): 虚拟机栈描述的是Java方法执行的内存模型:每个方法被执行的时候都会同时创建一个栈帧,栈它是用于支持续虚拟机进行方法调用和方法执行的数据结构。对于执行引擎来讲,活动线程中,只有栈顶的栈帧是有效的,称为当前栈帧,这个栈帧所关联的方法称为当前方法,执行引擎所运行的所有字节码指令都只针对当前栈帧进行操作。栈帧用于存储局部变量表、操作数栈、动态链接、方法返回地址和一些额外的附加信息。在编译程序代码时,栈帧中需要多大的局部变量表、多深的操作数栈都已经完全确定了,并且写入了方法表的Code属性之中。因此,一个栈帧需要分配多少内存,不会受到程序运行期变量数据的影响,而仅仅取决于具体的虚拟机实现。一个方法调用的过程就是一个栈帧从 VM 栈入栈到出栈的过程。
3 本地方法栈(Native Method Stack):
本地方法栈用于支持native方法的执行,存储了每个native方法的执行状态。本地方法栈和虚拟机栈他们的运行机制一致,唯一的区别是,虚拟机栈执行Java方法,本地方法栈执行native方法。
4 程序计数器(PC Register) :
一块较小的内存空间,它是当前线程所执行的字节码的行号指示器,字节码解释器工作时通过改变该计数器的值来选择下一条需要执行的字节码指令,分支、跳转、循环等基础功能都要依赖它来实现。每条线程都有一个独立的的程序计数器,各线程间的计数器互不影响,因此该区域是线程私有的。
5 java堆(Heap) 存储java实例或者对象的地方。这块是GC的主要区域。方法区和堆是被所有java线程共享的。
内存分区
内存主要被分为三块:新生代(Youn Generation)、旧生代(Old Generation)、持久代(Permanent Generation)。三代的特点不同,造就了他们使用的GC算法不同,新生代适合生命周期较短,快速创建和销毁的对象,旧生代适合生命周期较长的对象,持久代在Sun Hotpot虚拟机中就是指方法区(有些JVM根本就没有持久代这一说法)。
新生代(Youn Generation):大致分为Eden区和Survivor区,Survivor区又分为大小相同的两部分:FromSpace和ToSpace。新建的对象都是从新生代分配内存,Eden区不足的时候,会把存活的对象转移到Survivor区。当新生代进行垃圾回收时会出发Minor GC(也称作Youn GC)。
旧生代(Old Generation):旧生代用于存放新生代多次回收依然存活的对象,如缓存对象。当旧生代满了的时候就需要对旧生代进行回收,旧生代的垃圾回收称作Major GC(也称作Full GC)。
持久代(Permanent Generation):在Sun 的JVM中就是方法区的意思,尽管大多数JVM没有这一代。
垃圾检测算法
要想回收垃圾,我们首先得检测出哪些是垃圾,一般有以下两种方式:
引用计数法(Reference Counting): 给对象添加一个引用计数器,每当有一个地方引用它的时候,计数器就加1,当引用失效的时候,计数器就减1,当计数器为0的时候就是不被使用的时候,就可以回收了。
引用计数法固然简单高效,但是主流的Java虚拟机中都没有选用引用计数法来管理内存,最主要的原因就是它很难解决对象之间相互引用的问题,所以就有了下面第二种检测方法。
可达性分析算法: 本算法指的是通过一系列成为GC Roots的对象作为起始点,从这些点开始向下搜索,搜索所经过的路径成为引用链,当一个对象到GC Roots没有任何引用链的时候,就会被判定为可回收的对象。如下图所示,右侧因为没有和GC Roots连接,就可以在GC的时候被回收
垃圾收集算法
1. 标记清除
标记清除算法是最基础的收集算法,其他收集算法都是基于这种思想。标记清除算法分为“标记”和“清除”两个阶段:首先标记出需要回收的对象(这一过程在可达性分析过程中进行),标记完成之后统一清除对象。它的主要缺点:①.标记和清除过程效率不高 。②.标记清除之后会产生大量不连续的内存碎片。
2 标记整理(老年代回收算法)
标记整理,标记操作和“标记-清除”算法一致,后续操作不只是直接清理对象,而是在清理无用对象完成后让所有存活的对象都向一端移动,并更新引用其对象的指针。主要缺点:在标记-清除的基础上还需进行对象的移动,成本相对较高,好处则是不会产生内存碎片。
3. 复制算法(新生代算法)
复制算法,它将可用内存容量划分为大小相等的两块,每次只使用其中的一块。当这一块用完之后,就将还存活的对象复制到另外一块上面,然后在把已使用过的内存空间一次理掉。这样使得每次都是对其中的一块进行内存回收,不会产生碎片等情况,只要移动堆订的指针,按顺序分配内存即可,实现简单,运行高效。主要缺点:内存缩小为原来的一半
4 分代收集算法
当前商业虚拟机的垃圾收集都采用“分代收集”(Generational Collection)算法,根据对象存活周期的不同将内存划分为几块。
把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。
在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记—清理”或者“标记—整理”算法来进行回收。
以上是关于JVM的内存结构及GC机制的主要内容,如果未能解决你的问题,请参考以下文章