详述Java线程池实现原理
Posted 李子捌
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了详述Java线程池实现原理相关的知识,希望对你有一定的参考价值。
一、写在前面
1.1 线程池是什么
线程池(Thread Pool) 是一种池化思想管理线程的工具,经常出现在多线程服务器中,如mysql。
线程过多会带来额外的开销,其中包括创建销毁线程的开销,操作系统调度线程的开销等等,同时也降低了计算机的整体性能。线程池维护多个线程,等待监督管理者分配可并发执行的任务。这种做法,一方面避免了处理任务是创建销毁线程开销代价,另一方面避免了线程数量膨胀导致的过分调度问题,保证了对操作系统内核的充分利用。
本文描述的线程池是JDK提供的ThreadPoolExecutor类
使用线程池带来的好处
- 降低资源消耗:通过赤化技术重复利用已创建的线程,降低想成创建和 销毁造成的消耗
- 提高响应速度:任务到达时,无需等待线程创建即可立即执行
- 提高线程的可管理性:线程是稀缺资源,如果无限制创建,不仅会消耗系统资源,还会因为线程的不合理分配导致资源调度失衡,降低系统的稳定性。使用线程池可以进行统一的分配、调优和监控
- 提供更多更强大的功能:线程池具备可拓展性,允许开发人员向其中增加风多的功能。比如延时定时线程池ScheduledThreadPoolExecutor,就允许任务延期执行或定期执行
1.2 线程池解决的问题是什么
线程池解决的问题就是资源管理的问题。在并发环境下,系统不能够确定在任意时刻有多少任务需要执行,有多少资源需要投入。
在这种不确定性下将会带来以下若干的问题
- 频繁申请/销毁资源和调度资源,将带来额外的开销,可能是非常巨大的
- 对资源无限申请缺少抑制手段,容易引发系统资源耗尽问题的风险
- 系统无法合理管理内部的资源分布,会减低系统的稳定性
为了解决资源分配的问题,线程池采用“池化”(Pooling)思想。池化,顾名思义,是为了做大化收益并最小化风险,而将资源统一在一起管理的一种思想。
在计算机领域池化技术表现为:统一管理IT资源,包括服务器资源、存储、网络资源等。通过共享资源,使用户在第投入中获益。
除去线程池其他比较典型的几种使用策略包括
- 内存池(Memory Pooling):预先申请内存,提升申请内存的速度,减少内存碎片
- 连接池(Connection Pooling):预先申请数据库连接,提升申请连接的速度,降低系统开销
- 实例池(Object Pooling):循环使用对象,减资源在初始化和释放时昂贵的损耗
二、线程池和核心设计与实现
2.1 总体设计
Java中线程池核心实现类是ThreadPoolExecutor,本章基于JDK1.8的源码来分析Java线程池的核心设计与实现。首先看一下ThreadPoolExecutor的UML图,了解ThreadPoolExecutor的继承关系
ThreadPoolExecutor实现的顶层接口是Executor,顶层接口Executor提供了一种思想:将任务提交和任务执行进行解耦。用户无需关注如何创建线程,如何调度线程来执行任务,用户只需提供Runnable对象,将任务的运行逻辑提交到执行器Executor中,由Executor框架完成线程的调配和任务的执行部分。
ExecutorService
- 扩充执行任务的能力,补充可以为一个或者一批异步任务生成Future的方法
- 提供了管理线程池的方法,比如停止线程池的运行
AbstractExecutorService
- 串联任务流程,保证下层的实现只需要关注一个执行任务的方法
ThreadPoolExecutor
- 维护自身的生命周期
- 管理线程和任务,使两者良好的结合从而执行并行任务
ThreadPoolExecutor是如何运行,如何同时维护线程和执行任务的呢?其运行机制如下图所示
ThreadPoolExecutor运行流程
线程池在内部实际上构造了一个生产者消费者模型,将线程和任务两者解耦,并不直接关联,从而良好的管理缓冲任务,复用线程。线程池的运行主要分成两部分::任务管理、线程管理。任务管理充当生产者角色,当任务提交后,线程池会判断该任务后续流转
- 任务申请线程执行该任务
- 缓冲到队列中等待线程执行
- 拒绝该任务
线程管理部分是消费者,它们被统一维护在线程池内,根据任务请求进行线程的分配,当线程执行完任务后会继续获取新的任务执行,最终获取不到任务的时候,线程会被回收。
接下来按照如下三个方面讲解线程池的运行机制:
- 线程池如何维护自身状态
- 线程池如何管理任务
- 线程池如何管理线程
2.2 生命周期管理
线程池运行的状态,并不是用户显式设置的,而是伴随着线程池的运行,由内部来维 护。线程池内部使用一个变量维护两个值:运行状态 (runState) 和线程数量 (workerCount)。在具体实现中,线程池将运行状态 (runState)、线程数量 (workerCount)
两个关键参数的维护放在了一起,如下代码所示:
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
ctl 这个 AtomicInteger 类型,是对线程池的运行状态和线程池中有效线程的数量 进行控制的一个字段,它同时包含两部分的信息:线程池的运行状态 (runState) 和 线程池内有效线程的数量 (workerCount),高 3 位保存 runState,低 29 位保存 workerCount,两个变量之间互不干扰。用一个变量去存储两个值,可避免在做相关 决策时,出现不一致的情况,不必为了维护两者的一致,而占用锁资源。通过阅读线 程池源代码也可以发现,经常出现要同时判断线程池运行状态和线程数量的情况。线程池也提供了若干方法去供用户获得线程池当前的运行状态、线程个数。这里都使用的是位运算的方式,相比于基本运算,速度也会快很多。
关于内部封装的获取生命周期状态、获取线程池线程数量的计算方法如以下代码 所示:
// Packing and unpacking ctl
// 计算当前运行状态
private static int runStateOf(int c) { return c & ~CAPACITY; }
// 计算当前线程数据
private static int workerCountOf(int c) { return c & CAPACITY; }
// 通过状态和线程数生成ctl
private static int ctlOf(int rs, int wc) { return rs | wc; }
ThreadPoolExecutor 的运行状态有 5 种,分别为:
// runState is stored in the high-order bits
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
运行状态 | 状态描述 |
---|---|
RUNNING | 能接受新提交的任务,并且也能处理阻塞队列中的任务 |
SHUTDOWN | 状态关闭,不在接受新提交的任务,但是能继续处理阻塞队列已保存的让任务 |
STOP | 不接受新任务,也不处理队列中的任务,会中断正在处理任务的线程 |
TIDYING | 所有让任务都已终止,workerCount(有效处理让任务线程)状态为0 |
TERMINATED | 在terminated()方法执行结束后进入该状态 |
其生命周期转换如下图所示
线程池生命周期
2.3 任务调度机制
2.3.1 任务调度
任务调度是线程池的主要入口,当用户提交了一个任务,接下来这个任务将如何执行 都是由这个阶段决定的。了解这部分就相当于了解了线程池的核心运行机制。 首先,所有任务的调度都是由 execute 方法完成的,这部分完成的工作是:检查现在线程池的运行状态、运行线程数、运行策略,决定接下来执行的流程,是直接申请线程执行,或是缓冲到队列中执行,亦或是直接拒绝该任务。其执行过程如下:
- 首先检测线程池运行状态,如果不是 RUNNING,则直接拒绝,线程池要保证在 RUNNING 的状态下执行任务
- 如果 workerCount < corePoolSize,则创建并启动一个线程来执行新提交的任务
- 如果 workerCount >= corePoolSize,且线程池内的阻塞队列未满,则将任务添加到该阻塞队列中。
- 如 果 workerCount >= corePoolSize && workerCount < maximumPoolSize,且线程池内的阻塞队列已满,则创建并启动一个线程来执行新提交的任务。
- 如果 workerCount >= maximumPoolSize,并且线程池内的阻塞队列已满 , 则根据拒绝策略来处理该任务 , 默认的处理方式是直接抛异常。
其执行流程如下
任务调度流程图
2.3.2 任务缓冲
任务缓冲模块是线程池能够管理任务的核心部分。线程池的本质是对任务和线程的管 理,而做到这一点最关键的思想就是将任务和线程两者解耦,不让两者直接关联,才 可以做后续的分配工作。线程池中是以生产者消费者模式,通过一个阻塞队列来实现 的。阻塞队列缓存任务,工作线程从阻塞队列中获取任务。
阻塞队列 (BlockingQueue) 是一个支持两个附加操作的队列。这两个附加的操作是: 在队列为空时,获取元素的线程会等待队列变为非空。当队列满时,存储元素的线程 会等待队列可用。阻塞队列常用于生产者和消费者的场景,生产者是往队列里添加元 素的线程,消费者是从队列里拿元素的线程。阻塞队列就是生产者存放元素的容器,而消费者也只从容器里拿元素。
阻塞队列
使用不同的队列可以实现不一样的任务存取策略。在这里,我们可以再介绍下阻塞队列的成员:
名称 | 描述 |
---|---|
ArrayBlockingQueue | 一个用数组实现的有界阻塞队列,此队列按照先进先出(FIFO)的原则对元素进行排序。支持公平锁和非公平锁 |
LinkedBlockingDeque | 一个由链表结构组成的有界队列,此队列按照先进先出(FIFO)的原则对元素进行排序。此队列的默认长度为Integer.MAX_VALUE,所以默认创建此队列有容量危险 |
PriorityBlockingQueue | 一个支持线程优先级排序的无界队列,默认自然进行排序,也可以自定义实现compareTo()方法指定排序故障,不能保证同优先级元素的顺序。 |
DelayQueue | 一个实现PriorityBlockingQueue实现延迟获取的无界队列,在创建元素时,可以指定多久才能从队列中获取当前元素。只有延迟期满后才能从队列中获取元素。 |
SynchronousQueue | 一个不存储元素的阻塞队列,每个put操作必须等待take操作,否则不能添加元素。支持公平锁和非公平锁。SynchronousQueue的一个使用场景是在线程池里。Executors.newCachedThreadPool()就使用了SynchronousQueue,这个线程池根据需要(新任务来)创建新的线程,如果有空闲的线程就使用空闲线程,线程空闲60秒会被回收。 return new ThreadPoolExecutor( 0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue()); |
LinkedTransferQueue | 一个由链表结构组成的无界阻塞队列,相当于其他队列,LinkedTransferQueue多了transfer和tryTransfer方法 |
LinkedBlockingQueue | 一个由链表结构组成的双向阻塞队列,队列的头部和尾部都可以插入和删除元素,多线程并发时,可以将锁的竞争最多降到一半 |
2.3.3 任务申请
由上文的任务分配部分可知,任务的执行有两种可能:一种是任务直接由新创建的线 程执行。另一种是线程从任务队列中获取任务然后执行,执行完任务的空闲线程会再 次去从队列中申请任务再去执行。第一种情况仅出现在线程初始创建的时候,第二种 是线程获取任务绝大多数的情况。
线程需要从任务缓存模块中不断地取任务执行,帮助线程从阻塞队列中获取任务,实现线程管理模块和任务管理模块之间的通信。这部分策略由 getTask 方法实现,其 执行流程如下图所示:
线程获取任务的流程
getTask 这部分进行了多次判断,为的是控制线程的数量,使其符合线程池的状 态。如果线程池现在不应该持有那么多线程,则会返回 null 值。工作线程 Worker 会不断接收新任务去执行,而当工作线程 Worker 接收不到任务的时候,就会开始 被回收。
源码分析
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
// 判断线程池是否已停止运行
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
// Are workers subject to culling?
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
// 判断线程现阶段是否够多
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
// 限时任务获取和阻塞获取
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
2.3.4 任务拒绝
任务拒绝模块是线程池的保护部分,线程池有一个最大的容量,当线程池的任务缓存 队列已满,并且线程池中的线程数目达到 maximumPoolSize 时,就需要拒绝掉该任务,采取任务拒绝策略,保护线程池。
拒绝策略是一个接口,其设计如下:
public interface RejectedExecutionHandler {
/**
* Method that may be invoked by a {@link ThreadPoolExecutor} when
* {@link ThreadPoolExecutor#execute execute} cannot accept a
* task. This may occur when no more threads or queue slots are
* available because their bounds would be exceeded, or upon
* shutdown of the Executor.
*
* <p>In the absence of other alternatives, the method may throw
* an unchecked {@link RejectedExecutionException}, which will be
* propagated to the caller of {@code execute}.
*
* @param r the runnable task requested to be executed
* @param executor the executor attempting to execute this task
* @throws RejectedExecutionException if there is no remedy
*/
void rejectedExecution(Runnable r, ThreadPoolExecutor executor);
}
用户可以通过实现这个接口去定制拒绝策略,也可以选择 JDK 提供的四种已有拒绝策略,其特点如下
名称 | 描述 |
---|---|
ThreadPoolExecutor.AbortPolicy | 丢弃任务并抛出RejectedExecutionException异常。这是线程池默认的拒绝策略,在任务不能在提交的时候,抛出异常,及时反馈程序运行状态。如果是比较关键的业务,推荐使用该策略,这样子在系统不能承载更大并发的时候,能过及时的通过异常发现。 |
ThreadPoolExecutor.DiscardPolicy | 丢弃任务,但是不抛出异常。使用该策略,可能会使我们无法发现系统的异常状态。建议一些无关紧要的业务采用此策略。 |
ThreadPoolExecutor.DiscardOldestPolicy | 丢弃队列最前面的任务,然后重新提交比拒接的任务。是否要采用此种策略,需要根据实际业务是否允许丢弃老任务来认真衡量 |
ThreadPoolExecutor.CallerRunsPolicy | 由调用线程(提交任务的线程)来处理任务。这种情况是需要让所有的任务都执行完毕,那么就适合大量计算的任务类型去执行,多线程仅仅是增加大吞吐量的手段,最终必须要让每个任务都执行 |
/**
* A handler for rejected tasks that runs the rejected task
* directly in the calling thread of the {@code execute} method,
* unless the executor has been shut down, in which case the task
* is discarded.
*/
public static class CallerRunsPolicy implements RejectedExecutionHandler {
/**
* Creates a {@code CallerRunsPolicy}.
*/
public CallerRunsPolicy() { }
/**
* Executes task r in the caller's thread, unless the executor
* has been shut down, in which case the task is discarded.
*
* @param r the runnable task requested to be executed
* @param e the executor attempting to execute this task
*/
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
r.run();
}
}
}
/**
* A handler for rejected tasks that throws a
* {@code RejectedExecutionException}.
*/
public static class AbortPolicy implements RejectedExecutionHandler {
/**
* Creates an {@code AbortPolicy}.
*/
public AbortPolicy() { }
/**
* Always throws RejectedExecutionException.
*
* @param r the runnable task requested to be executed
* @param e the executor attempting to execute this task
* @throws RejectedExecutionException always
*/
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
throw new RejectedExecutionException("Task " + r.toString() +
" rejected from " +
e.toString());
}
}
/**
* A handler for rejected tasks that silently discards the
* rejected task.
*/
public static class DiscardPolicy implements RejectedExecutionHandler {
/**
* Creates a {@code DiscardPolicy}.
*/
public DiscardPolicy() { }
/**
* Does nothing, which has the effect of discarding task r.
*
* @param r the runnable task requested to be executed
* @param e the executor attempting to execute this task
*/
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
}
}
/**
* A handler for rejected tasks that discards the oldest unhandled
* request and then retries {@code execute}, unless the executor
* is shut down, in which case the task is discarded.
*/
public static class DiscardOldestPolicy implements RejectedExecutionHandler {
/**
* Creates a {@code DiscardOldestPolicy} for the given executor.
*/
public DiscardOldestPolicy() { }
/**
* Obtains and ignores the next task that the executor
* would otherwise execute, if one is immediately available,
* and then retries execution of task r, unless the executor
* is shut down, in which case task r is instead discarded.
*
* @param r the runnable task requested to be executed
* @param e the executor attempting to execute this task
*/
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
e.getQueue().poll();
e.execute(r);
}
}
}
2.4 Worker线程管理
2.4.1 Worker线程
线程池为了掌握线程的状态并维护线程的生命周期,设计了线程池内的工作线程Worker。
Java Worker源码部分
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
/** Thread this worker is running in. Null if factory fails. */
// worker持有的线程
final Thread thread;
/** Initial task to run. Possibly null. */
// 初始化的任务,可以为null
Runnable firstTask;
...
}
Worker 这个工作线程,实现了 Runnable 接口,并持有一个线程 thread,一个初始化的任务 firstTask。thread 是在调用构造方法时通过 ThreadFactory 来创建的线程,可以用来执行任务;firstTask 用它来保存传入的第一个任务,这个任务可以有也可以为 null。如果这个值是非空的,那么线程就会在启动初期立即执行这个任务,也就对应核心线程创建时的情况;如果这个值是 null,那么就需要创建一个线程去执行任务列表(workQueue)中的任务,也就是非核心线程的创建
/**
* The queue used for holding tasks and handing off to worker
* threads. We do not require that workQueue.poll() returning
* null necessarily means that workQueue.isEmpty(), so rely
* solely on isEmpty to see if the queue is empty (which we must
* do for example when deciding whether to transition from
* SHUTDOWN to TIDYING). This accommodates special-purpose
* queues such as DelayQueues for which poll() is allowed to
* return null even if it may later return non-null when delays
* expire.
*/
# workerQueue 源码定义
private final BlockingQueue<Runnable> workQueue;
worker执行任务
线程池需要管理线程的生命周期,需要在线程长时间不运行的时候进行回收。线程池 使用一张 Hash 表去持有线程的引用,这样可以通过添加引用、移除引用这样的操作 来控制线程的生命周期。这个时候重要的就是如何判断线程是否在运行。
/**
* Set containing all worker threads in pool. Accessed only when
* holding mainLock.
*/
private final HashSet<Worker> workers = new HashSet<Worker>();
Worker 是通过继承 AQS,使用 AQS 来实现独占锁这个功能。没有使用可重入锁ReentrantLock,而是使用 AQS,为的就是实现不可重入的特性去反应线程现在的执行状态。
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
- lock方法一旦获取了独占锁,表示当前线程正在执行任务中
- 如果正在执行任务,则不应该中断线程
- 如果该线程现在不是独占锁状态,也就是空闲状态,说明它没有正在处理任务,这时可以对该线程进行中断
- 线程池在执行shutdown方法或tryTeriminate方法是或调用interruptIdleWorkers方法来中断空闲线程,interruptIdleWorkers方法会使用tryLock方法来判断线程池中的线程是否是空闲状态,如果是空闲状态则可以安全回收
shutdown方法源码
public void shutdown() {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
checkShutdownAccess();
advanceRunState(SHUTDOWN);
// 执行interruptIdleWorkers方法
interruptIdleWorkers();
onShutdown(); // hook for ScheduledThreadPoolExecutor
} finally {
mainLock.unlock();
}
tryTerminate();
}
tryTerminate方法源码
final void tryTerminate() {
for (;;) {
int c = ctl.get();
if (isRunning(c) ||
runStateAtLeast(c, TIDYING) ||
(runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
return;
if (workerCountOf(c) != 0) { // Eligible to terminate
// 执行interruptIdleWorkers
interruptIdleWorkers(ONLY_ONE);
return;
}
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
try {
terminated();
} finally {
ctl.set(ctlOf(TERMINATED, 0));
termination.signalAll();
}
return;
}
} finally {
mainLock.unlock();
}
// else retry on failed CAS
}
}
interruptIdleWorkers方法源码
private void interruptIdleWorkers(boolean onlyOne) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
for (Worker w : workers) {
Thread t = w.thread;
if (!t.isInterrupted() && w.tryLock()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
} finally {
w.unlock();
}
}
if (onlyOne)
break;
}
} finally {
mainLock.unlock();
}
}
在线程回收过程中就使用到了这种特性,回收过程如下图所示:
线程池回收过程
2.4.2 worker线程增加
增加线程是通过线程池中的 addWorker 方法,该方法的功能就是增加一个线程, 该方法不考虑线程池是在哪个阶段增加的该线程,这个分配线程的策略是在上个步 骤完成的,该步骤仅仅完成增加线程,并使它运行,最后返回是否成功这个结果。 addWorker 方法有两个参数:firstTask、core。firstTask 参数用于指定新增的线程执行的第一个任务,该参数可以为空;core 参数为 true 表示在新增线程时会判断当前活动线程数是否少于 corePoolSize,false 表示新增线程前需要判断当前活动线程数是否少于 maximumPoolSize,其执行流程如下图所示:
申请线程执行流程图
源码分析
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// 判断线程是否已经停止
// 判断线程是否正在停止 如果是则判断线程是否用于执行剩余任务firstTask
// workQueue是否为空
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
// 获取线程数量
int wc = workerCountOf(c);
// 判断线程是否超过容量
// 判断线程是否超过对应核心数 上面讲了core 传true/false区别
if (wc >= CAPACITY ||
wc >= 深入源码,深度解析Java 线程池的实现原理