如何捕获TTL的通讯-工业总线协议分析

Posted 亿企创新-莫学良

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了如何捕获TTL的通讯-工业总线协议分析相关的知识,希望对你有一定的参考价值。

需求:

      当你想要了解两个MCU之间的TTL通讯内容时,我们可以通过对TTL数据总线上的数据进行监听,本文讲述监听的原理和实现方法。

方法1:开发板编程监听

        通过第三个MCU做TTL监听,如下图所示,这个MCU的两个串口,分别监听两根TTL数据线,然后通过第三个串口把数据发送出来。

       常见的单片机是STM32F103,有三个串口,可以实现这个功能,后面给出详细的源码。

方案优点:

       可以直接串口接收,生成通讯对话过程;

方案缺点:

       1.需要编程实现;

       2.需要知道通讯波特率,这点要么是猜测常见的波特率,如9600,115200,38400等,要么是用方法2的方法去探测。

     所幸实现该功能的STM32F103的程序我已经写好,下载到板子上,可以正常运行。

三个串口分别为:

UART1: PA9,PA10(RXD)

UART2:PA2,PA3(RXD)

UART3: PB10,PB11

因此将PA10和PA3作为监听线并在TTL总线上,就可以实现监听。


#include "stm32f10x.h"  //°üº¬ÐèÒªµÄÍ·Îļþ
#include "main.h"       //°üº¬ÐèÒªµÄÍ·Îļþ
#include "delay.h"      //°üº¬ÐèÒªµÄÍ·Îļþ
#include "usart1.h"     //°üº¬ÐèÒªµÄÍ·Îļþ



void My_USART1_Init(void)
{
	GPIO_InitTypeDef GPIO_InitStrue;
	USART_InitTypeDef USART_InitStrue;
	NVIC_InitTypeDef NVIC_InitStrue;
	
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);    //GPIO????
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);   //????
	
	GPIO_InitStrue.GPIO_Mode=GPIO_Mode_AF_PP;               //????
	GPIO_InitStrue.GPIO_Pin=GPIO_Pin_9;                     //PA9
	GPIO_InitStrue.GPIO_Speed=GPIO_Speed_10MHz;             //????
  GPIO_Init(GPIOA,&GPIO_InitStrue);                       //GPIO?????
	
	GPIO_InitStrue.GPIO_Mode=GPIO_Mode_IN_FLOATING;         //????
	GPIO_InitStrue.GPIO_Pin=GPIO_Pin_10;                    //PA10
	GPIO_InitStrue.GPIO_Speed=GPIO_Speed_10MHz;             //????
  GPIO_Init(GPIOA,&GPIO_InitStrue);                       //GPIO?????
	
	USART_InitStrue.USART_BaudRate = 115200  ;                                     //???
	USART_InitStrue.USART_HardwareFlowControl=USART_HardwareFlowControl_None;      //????
	USART_InitStrue.USART_Mode=USART_Mode_Tx|USART_Mode_Rx;                        //??????
	USART_InitStrue.USART_Parity=USART_Parity_No;                                  //???
	USART_InitStrue.USART_StopBits=USART_StopBits_1;                               //???
	USART_InitStrue.USART_WordLength=USART_WordLength_8b;                          //???	
	USART_Init(USART1,&USART_InitStrue);                                           //???????
	
	USART_Cmd(USART1,ENABLE);                            //????1	
	USART_ITConfig(USART1,USART_IT_RXNE,ENABLE);         //??????
	
	NVIC_InitStrue.NVIC_IRQChannel=USART1_IRQn;          //??IRQ??
	NVIC_InitStrue.NVIC_IRQChannelCmd=ENABLE;            //????
	NVIC_InitStrue.NVIC_IRQChannelPreemptionPriority=1;  //?????
	NVIC_InitStrue.NVIC_IRQChannelSubPriority=1;         //
	NVIC_Init(&NVIC_InitStrue);                          //?????                              
	
	
}
 
 
 
void My_USART2_Init(void)
{
	GPIO_InitTypeDef GPIO_InitStructure;
    NVIC_InitTypeDef NVIC_InitStructure;
    USART_InitTypeDef USART_InitStructure;
    
    /* Enable the USART2 Pins Software Remapping */
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_AFIO, ENABLE);
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2|RCC_APB2Periph_AFIO, ENABLE); 
    
    /* Configure USART2 Rx (PA.03) as input floating */
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;    
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
    GPIO_Init(GPIOA, &GPIO_InitStructure);
    
    /* Configure USART2 Tx (PA.02) as alternate function push-pull */
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
    GPIO_Init(GPIOA, &GPIO_InitStructure);
    
    /* Enable the USART2 Interrupt */
    NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2;
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
    NVIC_Init(&NVIC_InitStructure);    
    
    USART_InitStructure.USART_BaudRate = 115200;                
    USART_InitStructure.USART_WordLength = USART_WordLength_8b;
    USART_InitStructure.USART_StopBits = USART_StopBits_1;     
    USART_InitStructure.USART_Parity = USART_Parity_No;        
    USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
    USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;      
    
    USART_Init(USART2, &USART_InitStructure);
    USART_ITConfig(USART2, USART_IT_RXNE, ENABLE);
    /* Enable USART2 */
    USART_Cmd(USART2, ENABLE);
} 

 
void My_USART3_Init(void)
{
	  GPIO_InitTypeDef GPIO_InitStructure;
    NVIC_InitTypeDef NVIC_InitStructure;
    USART_InitTypeDef USART_InitStructure;
    
    /* Enable the USART3 Pins Software Remapping */
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE); 
    
    /* Configure USART3 Rx (PB.11) as input floating */
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;    
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
    GPIO_Init(GPIOB, &GPIO_InitStructure);
    
    /* Configure USART3 Tx (PB.10) as alternate function push-pull */
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
    GPIO_Init(GPIOB, &GPIO_InitStructure);
    
    /* Enable the USART3 Interrupt */
    NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3;
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
    NVIC_Init(&NVIC_InitStructure);    
    
    USART_InitStructure.USART_BaudRate = 115200;                
    USART_InitStructure.USART_WordLength = USART_WordLength_8b;
    USART_InitStructure.USART_StopBits = USART_StopBits_1;     
    USART_InitStructure.USART_Parity = USART_Parity_No;        
    USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
    USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;      
    
    USART_Init(USART3, &USART_InitStructure);
    USART_ITConfig(USART3, USART_IT_RXNE, ENABLE);
    /* Enable USART3 */
    USART_Cmd(USART3, ENABLE);
}
 
 
 
void USART1_IRQHandler(void)
{
	u8 res;
	 if(USART_GetITStatus(USART1,USART_IT_RXNE))
 {
     res= USART_ReceiveData(USART1); 
     USART_SendData(USART3,res);   
  }
}
 
void USART2_IRQHandler(void)
{
	u8 res;
	 if(USART_GetITStatus(USART2,USART_IT_RXNE))
 {
     res= USART_ReceiveData(USART2); 
     USART_SendData(USART3,res);   
  }
}
 
 
void USART3_IRQHandler(void)
{
	u8 res;
	 if(USART_GetITStatus(USART3,USART_IT_RXNE))
 {
     res= USART_ReceiveData(USART3); 
     //USART_SendData(USART3,res);   
  }
}
 
 int main(void)
 {	
	 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
	 
	My_USART1_Init();	 
	My_USART2_Init();	 
	My_USART3_Init(); 
 
	 
	while(1)
	{
	
		Delay_Ms(300);
	}
 }

方法2:逻辑分析仪监听

使用逻辑分析仪,将探针接到TTL总线上,开始捕获。

 

以上是关于如何捕获TTL的通讯-工业总线协议分析的主要内容,如果未能解决你的问题,请参考以下文章

I2C通讯协议

CAN总线通讯时CANH和CANL压差式多少

振弦采集模块UART 通讯协议

三菱FX3UPLC支持CAN通讯吗

基于arm571x的Linux CAN通讯

工控新人问下,can总线通讯的工作原理到底是啥呢?