R语言基础知识笔记
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言基础知识笔记相关的知识,希望对你有一定的参考价值。
参考技术A 1、向量是用于存储数值型,字符型或者逻辑型数据的一维数组。执行组合功能的函数为c(),可以用来创建向量。向量可根据位置进行索引,需要用[]。2、矩阵是一个二维数组,每个元素都拥有相同的模式,可通过函数matrix()创建矩阵。
3、数组是一个可以在两个以上维度存储数据的数据对象。例如,如果创建尺寸(2,3,4)的数组,那么就是创建4个矩形矩阵每个2行3列。数组只能存储数据类型。
4、矩阵和数组一样都只能包含一种数据类型,当有多种模式的数据时,使用数据框就更为方便。数据框可以用函数data.frame () 创建。
5、$ 被用来选取一个给定数据框中的某个特定变量。
6、attach()绑定数据集,detach()解除数据集。
7、with:attach,detach最好在单独的数据框内使用,在多个同名对象最好不要使用,函数with(),可以再具有多个同名对象的数据框内使用,但是必须加入花括号,这样就无须担心名称冲突了,但是它也有局限性,赋值仅在此函数的括号内生效。
8、列表是一些对象的有序集合。
9,、数据导入 read.table(),其中header = T,代表第一行为变量名称,不作为数据,header = F相反。sep代表数据分隔符,txt为"\t",csv为","。
10、table函数,用 table() 函数统计因子各水平的出现次数(称为频数或频率)。
>sex = c("女","女","女","男","男")
>table(sex)
>sex
男 女
2 3
求众数
> aim = table(sex)[table(sex)==max(table(sex))]
> aim
女
3
> max(table(sex))
[1] 3
> table(sex)==max(table(sex))
sex
男 女
FALSE TRUE
11、 无尺度网络: 是指在某一复杂的 系统 中,大部分节点只有少数几个连结,而某些节点却拥有与其他节点的大量连结。这些具有大量连结的节点称为“集散节点”,所拥有的连结可能高达数百、数千甚至数百万。这一特性说明该网络是无尺度的,因此,凡具有这一特性的网络都是无尺度网络。
12、options(stringsAsFactors = F)
#在调用as.data.frame的时,将stringsAsFactors设置为FALSE可以避免character类型自动转化为factor类型。
13、class():查看数据结构:vector、matrix、array、dataframe、list。
14、str():作用用英语来表示是:check classification of viriables,一般用于检查数据框当中有哪些数据。
15、mode() :查看数据元素类型。
16、typeof() :查看数据元素类型,基本等同于mode(),比mode()更为详细。
17、example():假设有一个函数foo,example("foo"),函数foo的使用示例。
18、apropos():列出名称中含有foo的所有可用函数。apropos("foo",mode="function")。
19、data():列出当前已加载包中所含的所有可用示例数据集。
20、ls():列出当前工作空间中的对象。
21、rm():移除(删除)一个或多个对象。
22、history(#):显示最近使用过的#个命令(默认值为25)。
23、options():显示或设置当前选项。有一个收藏文件有介绍options的功能。
24、boxplot():生成盒型图。
25、sum():计算和。sum(x,na.rm = TRUE)。
26、median():计算中位数。
27、cbind():以列结合变量。cbind(x,y,z)。
28、rbind():以行结合变量。
29、vector():以向量形式结合数据。vector(length = 10)。
30、rep():以矩阵形式结合数据。rep(c(1,,2,3),each = 10)
31、seq():生成一个有序的数列。seq(1,10)。
32、dim():矩阵或者cbind输出的维数。dim(Mydata)。
33、scan():从ascii文件中读取数据。scan(file = "test.txt")。
34、write.table():把一个变量写入到ascii文件。write.table(Z,file = "test.txt")。
35、order():确定数据的顺序。order(x)。
36、merge():合并两个数据框。merge(x,y,by = "ID")。
37、str():显示一个对象的内部结构。str(Mydata)。
38、factor():定义变量作为因子。factor(x)。
39、tapply():tapply(X = Veg$R,INDEX = Veg$Transect,FUN = mean).tapply函数根据第二个变量(Transect)的不同水平对第一变量(R)进行了求平均值运算。还可以求sd,var,length等操作。R语言初学者指南P75详细介绍了这个函数。
40、下一页介绍了sapply和lapply。
41、summary():计算基本信息。
42、table():计算列联表,统计因子各水平的出现次数(频数或频率)。table(x,y)。
43、plot():y对x的图形。pch形状,col颜色。
44、par():par(mfrow = c(2,2),mar = c(3,3,2,1))
mfrow生成一个具有4个面板的图形窗口。mar选项指定每个图形周围空白的大小,底部、左侧、顶部、右侧。
45、paste():将变量连接成字符串。paste("a","b",sep = "")。
46、log(): log = "x",log = "y",log = "xy",生成对数轴。
47、%in%:
a<-c(1,3,13,1443,43,43,4,34,3,4,3)
b<-c(1,13,11,1313,434,1)
a%in%b
# 返回内容#
[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
# 取反操作
!(a%in%b)
48、sort()函数是对向量进行从小到大的排序
rank()函数返回的是对向量中每个数值对应的秩
order()函数返回的值表示位置,依次对应的是向量的最小值、次小值、第三小值……最大值等(位置索引)
arrange()函数(需加载dplyr包)针对数据框,返回基于某列排序后的数据框,方便多重依据排序。
49、subset(): df <- data.frame( a = 1:10, b = 2:11, c = 3:12 )
df <- subset(df, select = c(a,c)) #选取列a和c
df <- subset(df, select = -c(a,c) ) #去除列a和c
[读书笔记] R语言实战 R语言介绍
典型数据分析的步骤:
R语言:为统计计算和绘图而生的语言和环境
数据分析:统计学,机器学习
R的使用
1. 区分大小写的解释型语言
2. R语句赋值:<-
3. R注释: #
4. 创建向量 c()
5. 观察演示 列表demo(),图形演示demo(graphics)
6. 帮助函数
7. getwd()查看当前工作目录, setwd()设定当前工作目录
setwd(\'E:\\\\\') getwd() [1] "E:/"
8. 工作空间管理函数
9. 输入输出
1). 输入
source(\'filename\') 在当前会话中执行一个脚本
2). 文本输出
sink(\'filename\')输出重定向到文件filename, append=True追加文件
3). 图形输出
4). dev.off()输出返回到终端
#在当前会话中执行脚本 source("script1.R") #文本输出 [追加] 到myoutput, 图形输出保存到mygraphs.pdf sink("myoutput",append=TRUE, split= TRUE) pdf("mygraphs.pdf") source("script2.R") # sink() #结果返回到终端 dev.off() source("script3.R")
10. 包管理
#安装ggplot2包 install.packages("ggplot2") #更新ggplot2包 update.packages("ggplot2") #载入包 library(ggplot2) #查看已加载包 (.packages()) #卸除包 detach("package:ggplot2") #卸载包 remove.packages("ggplot2")
以上是关于R语言基础知识笔记的主要内容,如果未能解决你的问题,请参考以下文章