数据分析从入门到“入坑“系列利用Python学习数据分析-Numpy中的索引
Posted Vax_Loves_1314
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据分析从入门到“入坑“系列利用Python学习数据分析-Numpy中的索引相关的知识,希望对你有一定的参考价值。
基本的索引和切片
NumPy数组的索引是一个内容丰富的主题,因为选取数据子集或单个元素的方式有很多。一维数组很简单。从表面上看,它们跟Python列表的功能差不多:
In [60]: arr = np.arange(10) In [61]: arr Out[61]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) In [62]: arr[5] Out[62]: 5 In [63]: arr[5:8] Out[63]: array([5, 6, 7]) In [64]: arr[5:8] = 12 In [65]: arr Out[65]: array([ 0, 1, 2, 3, 4, 12, 12, 12, 8, 9])
如上所示,当你将一个标量值赋值给一个切片时(如arr[5:8]=12),该值会自动传播(也就说后面将会讲到的“广播”)到整个选区。跟列表最重要的区别在于,数组切片是原始数组的视图。这意味着数据不会被复制,视图上的任何修改都会直接反映到源数组上。
作为例子,先创建一个arr的切片:
In [66]: arr_slice = arr[5:8] In [67]: arr_slice Out[67]: array([12, 12, 12])
现在,当我修稿arr_slice中的值,变动也会体现在原始数组arr中:
In [68]: arr_slice[1] = 12345 In [69]: arr Out[69]: array([ 0, 1, 2, 3, 4, 12, 12345, 12, 8, 9])
切片[ : ]会给数组中的所有值赋值:
In [70]: arr_slice[:] = 64 In [71]: arr Out[71]: array([ 0, 1, 2, 3, 4, 64, 64, 64, 8, 9])
如果你刚开始接触NumPy,可能会对此感到惊讶(尤其是当你曾经用过其他热衷于复制数组数据的编程语言)。由于NumPy的设计目的是处理大数据,所以你可以想象一下,假如NumPy坚持要将数据复制来复制去的话会产生何等的性能和内存问题。
注意:如果你想要得到的是ndarray切片的一份副本而非视图,就需要明确地进行复制操作,例如
arr[5:8].copy()
。
对于高维度数组,能做的事情更多。在一个二维数组中,各索引位置上的元素不再是标量而是一维数组:
In [72]: arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) In [73]: arr2d[2] Out[73]: array([7, 8, 9])
因此,可以对各个元素进行递归访问,但这样需要做的事情有点多。你可以传入一个以逗号隔开的索引列表来选取单个元素。也就是说,下面两种方式是等价的:
In [74]: arr2d[0][2] Out[74]: 3 In [75]: arr2d[0, 2] Out[75]: 3
图4-1说明了二维数组的索引方式。轴0作为行,轴1作为列。
在多维数组中,如果省略了后面的索引,则返回对象会是一个维度低一点的ndarray(它含有高一级维度上的所有数据)。因此,在2×2×3数组arr3d中:
In [76]: arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]) In [77]: arr3d Out[77]: array([[[ 1, 2, 3], [ 4, 5, 6]], [[ 7, 8, 9], [10, 11, 12]]])
arr3d[0]是一个2×3数组:
In [78]: arr3d[0] Out[78]: array([[1, 2, 3], [4, 5, 6]])
标量值和数组都可以被赋值给arr3d[0]:
In [79]: old_values = arr3d[0].copy() In [80]: arr3d[0] = 42 In [81]: arr3d Out[81]: array([[[42, 42, 42], [42, 42, 42]], [[ 7, 8, 9], [10, 11, 12]]]) In [82]: arr3d[0] = old_values In [83]: arr3d Out[83]: array([[[ 1, 2, 3], [ 4, 5, 6]], [[ 7, 8, 9], [10, 11, 12]]])
相似的,arr3d[1,0]可以访问索引以(1,0)开头的那些值(以一维数组的形式返回):
In [84]: arr3d[1, 0] Out[84]: array([7, 8, 9])
虽然是用两步进行索引的,表达式是相同的:
In [85]: x = arr3d[1] In [86]: x Out[86]: array([[ 7, 8, 9], [10, 11, 12]]) In [87]: x[0] Out[87]: array([7, 8, 9])
注意,在上面所有这些选取数组子集的例子中,返回的数组都是视图。
切片索引
ndarray的切片语法跟Python列表这样的一维对象差不多:
In [88]: arr Out[88]: array([ 0, 1, 2, 3, 4, 64, 64, 64, 8, 9]) In [89]: arr[1:6] Out[89]: array([ 1, 2, 3, 4, 64])
对于之前的二维数组arr2d,其切片方式稍显不同:
In [90]: arr2d Out[90]: array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) In [91]: arr2d[:2] Out[91]: array([[1, 2, 3], [4, 5, 6]])
可以看出,它是沿着第0轴(即第一个轴)切片的。也就是说,切片是沿着一个轴向选取元素的。表达式arr2d[:2]可以被认为是“选取arr2d的前两行”。
你可以一次传入多个切片,就像传入多个索引那样:
In [92]: arr2d[:2, 1:] Out[92]: array([[2, 3], [5, 6]])
像这样进行切片时,只能得到相同维数的数组视图。通过将整数索引和切片混合,可以得到低维度的切片。
例如,我可以选取第二行的前两列:
In [93]: arr2d[1, :2] Out[93]: array([4, 5])
相似的,还可以选择第三列的前两行:
In [94]: arr2d[:2, 2] Out[94]: array([3, 6])
图4-2对此进行了说明。注意,“只有冒号”表示选取整个轴,因此你可以像下面这样只对高维轴进行切片:
In [95]: arr2d[:, :1] Out[95]: array([[1], [4], [7]])
自然,对切片表达式的赋值操作也会被扩散到整个选区:
In [96]: arr2d[:2, 1:] = 0 In [97]: arr2d Out[97]: array([[1, 0, 0], [4, 0, 0], [7, 8, 9]])
布尔型索引
来看这样一个例子,假设我们有一个用于存储数据的数组以及一个存储姓名的数组(含有重复项)。在这里,我将使用numpy.random中的randn函数生成一些正态分布的随机数据:
In [98]: names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe']) In [99]: data = np.random.randn(7, 4) In [100]: names Out[100]: array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'], dtype='<U4') In [101]: data Out[101]: array([[ 0.0929, 0.2817, 0.769 , 1.2464], [ 1.0072, -1.2962, 0.275 , 0.2289], [ 1.3529, 0.8864, -2.0016, -0.3718], [ 1.669 , -0.4386, -0.5397, 0.477 ], [ 3.2489, -1.0212, -0.5771, 0.1241], [ 0.3026, 0.5238, 0.0009, 1.3438], [-0.7135, -0.8312, -2.3702, -1.8608]])
假设每个名字都对应data数组中的一行,而我们想要选出对应于名字"Bob"的所有行。跟算术运算一样,数组的比较运算(如==)也是矢量化的。因此,对names和字符串"Bob"的比较运算将会产生一个布尔型数组:
In [102]: names == 'Bob' Out[102]: array([ True, False, False, True, False, False, False], dtype=bool)
这个布尔型数组可用于数组索引:
In [103]: data[names == 'Bob'] Out[103]: array([[ 0.0929, 0.2817, 0.769 , 1.2464], [ 1.669 , -0.4386, -0.5397, 0.477 ]])
布尔型数组的长度必须跟被索引的轴长度一致。此外,还可以将布尔型数组跟切片、整数(或整数序列,稍后将对此进行详细讲解)混合使用:
In [103]: data[names == 'Bob'] Out[103]: array([[ 0.0929, 0.2817, 0.769 , 1.2464], [ 1.669 , -0.4386, -0.5397, 0.477 ]])
注意:如果布尔型数组的长度不对,布尔型选择就会出错,因此一定要小心。
下面的例子,我选取了names == 'Bob'
的行,并索引了列:
In [104]: data[names == 'Bob', 2:] Out[104]: array([[ 0.769 , 1.2464], [-0.5397, 0.477 ]]) In [105]: data[names == 'Bob', 3] Out[105]: array([ 1.2464, 0.477 ])
要选择除"Bob"以外的其他值,既可以使用不等于符号(!=),也可以通过~对条件进行否定:
In [106]: names != 'Bob' Out[106]: array([False, True, True, False, True, True, True], dtype=bool) In [107]: data[~(names == 'Bob')] Out[107]: array([[ 1.0072, -1.2962, 0.275 , 0.2289], [ 1.3529, 0.8864, -2.0016, -0.3718], [ 3.2489, -1.0212, -0.5771, 0.1241], [ 0.3026, 0.5238, 0.0009, 1.3438], [-0.7135, -0.8312, -2.3702, -1.8608]])
~操作符用来反转条件很好用:
In [108]: cond = names == 'Bob' In [109]: data[~cond] Out[109]: array([[ 1.0072, -1.2962, 0.275 , 0.2289], [ 1.3529, 0.8864, -2.0016, -0.3718], [ 3.2489, -1.0212, -0.5771, 0.1241], [ 0.3026, 0.5238, 0.0009, 1.3438], [-0.7135, -0.8312, -2.3702, -1.8608]])
选取这三个名字中的两个需要组合应用多个布尔条件,使用&(和)、|(或)之类的布尔算术运算符即可:
In [110]: mask = (names == 'Bob') | (names == 'Will') In [111]: mask Out[111]: array([ True, False, True, True, True, False, False], dtype=bool) In [112]: data[mask] Out[112]: array([[ 0.0929, 0.2817, 0.769 , 1.2464], [ 1.3529, 0.8864, -2.0016, -0.3718], [ 1.669 , -0.4386, -0.5397, 0.477 ], [ 3.2489, -1.0212, -0.5771, 0.1241]])
通过布尔型索引选取数组中的数据,将总是创建数据的副本,即使返回一模一样的数组也是如此。
注意:Python关键字and和or在布尔型数组中无效。要使用&与|。
通过布尔型数组设置值是一种经常用到的手段。为了将data中的所有负值都设置为0,我们只需:
In [113]: data[data < 0] = 0 In [114]: data Out[114]: array([[ 0.0929, 0.2817, 0.769 , 1.2464], [ 1.0072, 0. , 0.275 , 0.2289], [ 1.3529, 0.8864, 0. , 0. ], [ 1.669 , 0. , 0. , 0.477 ], [ 3.2489, 0. , 0. , 0.1241], [ 0.3026, 0.5238, 0.0009, 1.3438], [ 0. , 0. , 0. , 0. ]])
通过一维布尔数组设置整行或列的值也很简单:
In [115]: data[names != 'Joe'] = 7 In [116]: data Out[116]: array([[ 7. , 7. , 7. , 7. ], [ 1.0072, 0. , 0.275 , 0.2289], [ 7. , 7. , 7. , 7. ], [ 7. , 7. , 7. , 7. ], [ 7. , 7. , 7. , 7. ], [ 0.3026, 0.5238, 0.0009, 1.3438], [ 0. , 0. , 0. , 0. ]])
后面会看到,这类二维数据的操作也可以用pandas方便的来做。
花式索引
花式索引(Fancy indexing)是一个NumPy术语,它指的是利用整数数组进行索引。假设我们有一个8×4数组:
In [117]: arr = np.empty((8, 4)) In [118]: for i in range(8): .....: arr[i] = i In [119]: arr Out[119]: array([[ 0., 0., 0., 0.], [ 1., 1., 1., 1.], [ 2., 2., 2., 2.], [ 3., 3., 3., 3.], [ 4., 4., 4., 4.], [ 5., 5., 5., 5.], [ 6., 6., 6., 6.], [ 7., 7., 7., 7.]])
为了以特定顺序选取行子集,只需传入一个用于指定顺序的整数列表或ndarray即可:
In [120]: arr[[4, 3, 0, 6]] Out[120]: array([[ 4., 4., 4., 4.], [ 3., 3., 3., 3.], [ 0., 0., 0., 0.], [ 6., 6., 6., 6.]])
这段代码确实达到我们的要求了!使用负数索引将会从末尾开始选取行:
In [121]: arr[[-3, -5, -7]] Out[121]: array([[ 5., 5., 5., 5.], [ 3., 3., 3., 3.], [ 1., 1., 1., 1.]])
一次传入多个索引数组会有一点特别。它返回的是一个一维数组,其中的元素对应各个索引元组:
In [122]: arr = np.arange(32).reshape((8, 4)) In [123]: arr Out[123]: array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23], [24, 25, 26, 27], [28, 29, 30, 31]]) In [124]: arr[[1, 5, 7, 2], [0, 3, 1, 2]] Out[124]: array([ 4, 23, 29, 10])
附录A中会详细介绍reshape方法。
最终选出的是元素(1,0)、(5,3)、(7,1)和(2,2)。无论数组是多少维的,花式索引总是一维的。
这个花式索引的行为可能会跟某些用户的预期不一样(包括我在内),选取矩阵的行列子集应该是矩形区域的形式才对。下面是得到该结果的一个办法:
In [125]: arr[[1, 5, 7, 2]][:, [0, 3, 1, 2]] Out[125]: array([[ 4, 7, 5, 6], [20, 23, 21, 22], [28, 31, 29, 30], [ 8, 11, 9, 10]])
记住,花式索引跟切片不一样,它总是将数据复制到新数组中。
以上是关于数据分析从入门到“入坑“系列利用Python学习数据分析-Numpy中的索引的主要内容,如果未能解决你的问题,请参考以下文章
数据分析从入门到“入坑“系列利用Python学习数据分析-Python语法基础
数据分析从入门到“入坑“系列利用Python学习数据分析-环境配置和软件安装
数据分析从入门到“入坑“系列利用Python学习数据分析-Python函数
数据分析从入门到“入坑“系列利用Python学习数据分析-Numpy数组运算