OpenCV竟然可以这样学!成神之路终将不远(三十三)
Posted 满目星辰wwq
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了OpenCV竟然可以这样学!成神之路终将不远(三十三)相关的知识,希望对你有一定的参考价值。
目录
33 哈里斯角检测
33.1 目标
在本章中, - 我们将了解”Harris Corner Detection”背后的概念。 - 我们将看到以下函数:
- cv.cornerHarris()
- cv.cornerSubPix()
33.2 理论
在上一章中,我们看到角是图像中各个方向上强度变化很大的区域。Chris Harris和Mike Stephens在1988年的论文《组合式拐角和边缘检测器》中做了一次尝试找到这些拐角的尝试,所以现在将其称为哈里斯拐角检测器。他把这个简单的想法变成了数学形式。它基本上找到了(u,v)在所有方向上位移的强度差异。表示如下:
窗口函数要么是一个矩形窗口,要么是高斯窗口,它在下面赋予了值。
我们必须最大化这个函数E(u,v)用于角检测。这意味着,我们必须最大化第二个项。将泰勒扩展应用于上述方程,并使用一些数学步骤(请参考任何你喜欢的标准文本书),我们得到最后的等式:
其中:
在此,I_x和I_y分别是在x和y方向上的图像导数。(可以使用cv.Sobel()轻松找到)。
然后是主要部分。之后,他们创建了一个分数,基本上是一个等式,它将确定一个窗口是否可以包含一个角。
其中,以下三项是是 M 的特征值。
因此,这些特征值的值决定了区域是拐角,边缘还是平坦。
- 当|R|较小,这在和较小时发生,该区域平坦。
- 当R<0时(当时发生,反之亦然),该区域为边。
- 当R很大时,这发生在和大且~时,该区域是角。
可以用如下图来表示:
因此,Harris Corner Detection的结果是具有这些分数的灰度图像。合适的阈值可为您提供图像的各个角落。我们将以一个简单的图像来完成它。
33.3 OpenCV中的哈里斯角检测
为此,OpenCV具有函数cv.cornerHarris()。其参数为:
- img - 输入图像,应为灰度和float32类型。
- blockSize - 是拐角检测考虑的邻域大小。
- ksize - 使用的Sobel导数的光圈参数。
- k - 等式中的哈里斯检测器自由参数。
请参阅以下示例:
import numpy as np
import cv2 as cv
filename = 'chessboard.jpg'
img = cv.imread(filename)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
gray = np.float32(gray)
dst = cv.cornerHarris(gray, 2, 3, 0.04)
# result用于标记角点,并不重要
dst = cv.dilate(dst, None)
# 最佳值的阈值,它可能因图像而异
img[dst > 0.01 * dst.max()] = [0, 0, 255]
cv.imshow('dst', img)
if cv.waitKey(0) & 0xff == 27:
cv.destroyAllWindows()
运行结果如下:
33.4 SubPixel精度的转角
有时,你可能需要找到最精确的角落。OpenCV附带了一个函数cv.cornerSubPix(),它进一步细化了以亚像素精度检测到的角落。下面是一个例子。和往常一样,我们需要先找到哈里斯角。然后我们通过这些角的质心(可能在一个角上有一堆像素,我们取它们的质心)来细化它们。Harris角用红色像素标记,精制角用绿色像素标记。对于这个函数,我们必须定义何时停止迭代的条件。我们在特定的迭代次数或达到一定的精度后停止它,无论先发生什么。我们还需要定义它将搜索角落的邻居的大小。
import numpy as np
import cv2 as cv
filename = 'chessboard2.jpg'
img = cv.imread(filename)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
# 寻找哈里斯角
gray = np.float32(gray)
dst = cv.cornerHarris(gray, 2, 3, 0.04)
# dst用于标记角点,并不重要
dst = cv.dilate(dst, None)
ret, dst = cv.threshold(dst, 0.01 * dst.max(), 255, 0)
dst = np.uint8(dst)
# 寻找质心
ret, labels, stats, centroids = cv.connectedComponentsWithStats(dst)
# 定义停止和完善拐角的条件
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 100, 0.001)
corners = cv.cornerSubPix(gray, np.float32(centroids), (5, 5), (-1, -1), criteria)
# 绘制
res = np.hstack((centroids, corners))
res = np.int0(res)
img[res[:, 1], res[:, 0]] = [0, 0, 255]
img[res[:, 3], res[:, 2]] = [0, 255, 0]
cv.imwrite('subpixel5.jpg', img)
以下是结果,其中一些重要位置显示在缩放窗口中以可视化(PS:什么鬼,我的为什么就啥都没有变化):
欢迎评论区留言,一起探讨OpenCV成神之路的奥秘。
顺便给我加个关注,点个赞,加个收藏,让我们一起登上神坛。
以上是关于OpenCV竟然可以这样学!成神之路终将不远(三十三)的主要内容,如果未能解决你的问题,请参考以下文章