运动学基于改进的遗传算法和高斯烟羽模型模拟气体扩散

Posted 博主QQ2449341593

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了运动学基于改进的遗传算法和高斯烟羽模型模拟气体扩散相关的知识,希望对你有一定的参考价值。

一、简介

1 高斯羽烟模型方程
在这里插入图片描述
式中c为污染物浓度(单位:kg/m3)
Q为源强(单位:kg/s)
u为泄漏高度的平均风速(单位:m/s)
y、z分别用浓度标准偏差表示的y轴及z轴上的扩散参数
H为泄漏有效高度(单位:m)

2 扩散系数系数
在这里插入图片描述

二、源代码

function varargout = mGA_new(varargin)
% MGA_NEW MATLAB code for mGA_new.fig
%      MGA_NEW, by itself, creates a new MGA_NEW or raises the existing
%      singleton*.
%
%      H = MGA_NEW returns the handle to a new MGA_NEW or the handle to
%      the existing singleton*.
%
%      MGA_NEW('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in MGA_NEW.M with the given input arguments.
%
%      MGA_NEW('Property','Value',...) creates a new MGA_NEW or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the GUI before mGA_new_OpeningFcn gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to mGA_new_OpeningFcn via varargin.
%
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
%      instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help mGA_new

% Last Modified by GUIDE v2.5 04-Jul-2020 16:21:23

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @mGA_new_OpeningFcn, ...
                   'gui_OutputFcn',  @mGA_new_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT


% --- Executes just before mGA_new is made visible.
function mGA_new_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to mGA_new (see VARARGIN)

% Choose default command line output for mGA_new
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes mGA_new wait for user response (see UIRESUME)
% uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line.
function varargout = mGA_new_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;


% --- Executes on selection change in popupmenu1.
function popupmenu1_Callback(hObject, eventdata, handles)
% hObject    handle to popupmenu1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu1 contents as cell array
%        contents{get(hObject,'Value')} returns selected item from popupmenu1


% --- Executes during object creation, after setting all properties.
function popupmenu1_CreateFcn(hObject, eventdata, handles)
% hObject    handle to popupmenu1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hObject,'BackgroundColor','white');
end



function feng_Callback(hObject, eventdata, handles)
% hObject    handle to feng (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of feng as text
%        str2double(get(hObject,'String')) returns contents of feng as a double


% --- Executes during object creation, after setting all properties.
function feng_CreateFcn(hObject, eventdata, handles)
% hObject    handle to feng (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hObject,'BackgroundColor','white');
end



function gaodu_Callback(hObject, eventdata, handles)
% hObject    handle to gaodu (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of gaodu as text
%        str2double(get(hObject,'String')) returns contents of gaodu as a double


% --- Executes during object creation, after setting all properties.
function gaodu_CreateFcn(hObject, eventdata, handles)
% hObject    handle to gaodu (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hObject,'BackgroundColor','white');
end


% --- Executes on button press in jiancedian.
function jiancedian_Callback(hObject, eventdata, handles)
% hObject    handle to jiancedian (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
[filename,pathname]=uigetfile({'*xls;*.xlsx'},'读入测量数据文件');%加载路径的选择
fpath=[pathname,filename];%总的路径
data=xlsread(fpath);%读测量文件
set(handles.guance,'data',data);%写入到表中
setappdata(handles.jiancedian,'data',data);





% --- Executes on button press in fansuan.
function fansuan_Callback(hObject, eventdata, handles)
% hObject    handle to fansuan (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 %% 获取参数
% diedai=str2double(get(handles.deidai,'String'));% 进化次数
val=get(handles.popupmenu1,'value'); %这是获取当前选项的位置,从上到下是1,2,3...
str=get(handles.popupmenu1,'string');
W=str{val}; %这个将返回当前选项的内容,若是纯数字用str2num(str(val))
popsize=100; %种群规模  
lenchrom=3;%变量字串长度
maxgen=str2double(get(handles.diedai,'String'));% 进化次数
% maxgen=1000;% 进化次数
popmax=500;% 种群最大值
popmin=-500;% 种群最小值
u1=str2double(get(handles.feng,'String'));
hr=str2double(get(handles.gaodu,'String'));
% % z1=str2double(get(handles.edit3,'String'));
% z1=0;
% Q=str2double(get(handles.edit8,'String'));
dt=getappdata(handles.jiancedian,'data');
d=dt(:,:);
% mGA.data(:,1)=dt(:,2);
% mGA.data(:,2)=dt(:,3);
% % z1=dt(:,3);
% % set(handles.uitable2,'data',data);
%% 开始
bound=[0 20000;popmin popmax;popmin popmax];  %变量范围
for i=1:popsize
    %随机产生一个种群
    GApop(i,:)=Code(lenchrom,bound);       %随机产生个体
%     GApop(i,:)=mGA.data(i,:);  
    %计算适应度
    fitvalue(i)=fitness(GApop(i,:),u1,hr,d,W);            %染色体的适应度
end
% set(handles.uitable2,'data',fitvalue);
%% 找最好的染色体
[bestfitness,bestindex]=min(fitvalue);
xm=GApop(bestindex,:);   %全局最佳
gbest=GApop;                %体最佳
fitnessgbest=fitvalue;       %个体最佳适应度值
xv=bestfitness;   %全局最佳适应度值
% % set(handles.uitable2,'data',xv);
%% 迭代寻优
for i=1:maxgen
        %种群更新 GA选择更新
        GApop=Select(GApop,fitvalue,popsize); % 其中Select为选择算子函数

        % 交叉操作 GA
        pc=i/maxgen; % maxgen  进化次数  
        GApop=Cross(pc,lenchrom,GApop,popsize,bound); % 其中Cross为交叉算子函数

        % 变异操作 GA变异
        pm=i/maxgen;
        GApop=Mutation(pm,lenchrom,GApop,popsize,[i maxgen],bound);

        pop=GApop;
        
      for j=1:popsize
        %适应度值即变量约束条件
        if 1*pop(j,1)+0*pop(j,2)+0*pop(j,3)<=20000 && 1*pop(j,1)+0*pop(j,2)+0*pop(j,3)>=0
            if 0*pop(j,1)+1*pop(j,2)+0*pop(j,3)<=500 && 0*pop(j,1)+1*pop(j,2)+0*pop(j,3)>=-500
               if 0*pop(j,1)+0*pop(j,2)+1*pop(j,3)<=500 && 0*pop(j,1)+0*pop(j,2)+1*pop(j,3)>=-500
                    fitvalue(j)=fitness(pop(j,:),u1,hr,d,W);
               end
            end 
        end             
        %个体最优更新
        if fitvalue(j) < fitnessgbest(j)
            gbest(j,:) = pop(j,:);
            fitnessgbest(j) = fitvalue(j);
        end
        
        %群体最优更新
        if fitvalue(j) < xv
            xm = pop(j,:);
            xv = fitvalue(j);
        end
      end
       QQ(i)=xm(:,1);
       x(i)=xm(:,2);
       y(i)=xm(:,3);
       v(i)=xv;
end

三、运行结果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

四、备注

代码下载https://www.cnblogs.com/matlabxiao/p/14883637.html

以上是关于运动学基于改进的遗传算法和高斯烟羽模型模拟气体扩散的主要内容,如果未能解决你的问题,请参考以下文章

运动学基于改进的遗传和粒子群算法高斯烟羽模型模拟气体扩散matlab源码

运动学基于改进的遗传和粒子群算法高斯烟羽模型模拟气体扩散matlab源码

运动学基于matlab GUI改进的遗传算法和高斯烟羽模型模拟气体扩散含Matlab源码 1060期

运动学基于matlab改进的遗传和粒子群算法高斯烟羽模型模拟气体扩散含Matlab源码 1061期

气动学基于matlab改进的遗传和粒子群算法高斯烟羽模型模拟气体扩散含Matlab源码 1061期

python 气体扩散,在 Python中用数值模拟研究气体扩散