经典十大排序算法(含升序降序,基数排序含负数排序)Java版完整代码建议收藏系列
Posted 牛哄哄的柯南
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了经典十大排序算法(含升序降序,基数排序含负数排序)Java版完整代码建议收藏系列相关的知识,希望对你有一定的参考价值。
写在前面的话
虽然已经有很多人总结过这十大排序算法,优秀的文章也不少,但是Java完整版的好像不多,还存在某些文章代码存在错误的情况,同时也为了自己练手,决定把所有的写一遍巩固下,同时也真诚的希望阅读到这篇文章的小伙伴们可以自己去从头敲一遍,不要粘贴复制!希望我的文章对你有所帮助,每天进步一点点!!!
我用通俗的理解写下对算法的解释,对某个算法的运行过程不是很理解的话或者想看比较官方的解释的话,单独搜索某个算法,看几篇不同的解释,就可以有自己的理解了,这里我主要展示代码以及进行通俗的解释!整起来,再强调一次,一定要自己敲一遍,这样才能理解的更深刻!
十大排序算法对比
关于最后一列的稳定性,我稍微解释下,例如对序列:1 2 4 2 6 排序,序列中存在两个2,如果我们把这两个2标记上(让他俩不同),排序之后,前面的2还在前面,那么就称这种排序是稳定的,反之不稳定。
冒泡排序
简单解释:
原理就如算法名字一样,就像水中的气泡一样,每次我都把最大的或最小的放到最后面,这样总共需要n-1趟即可完成排序,这就是第一层循环,第二次循环就是遍历未被固定的那些数(理解成数组左边的数,因为每层循环都会把最大或最小的数升到最右边固定起来,下次就不遍历这些数了),两层循环遍历结束后,所有的数就排好序了。
两层循环所以冒泡排序算法的时间复杂度是O( n 2 n^{2} n2),是一个非常高的时间复杂度,我在下面的代码进行了优化,加了一个标志位,如果上一次循环未发生交换,就说明已经是有序的了,就不继续下去了,反之继续进行下一轮。
本文的图片来源网络,仅用于大家学习,侵权联系删除!(下同)
完整代码:
package com.keafmd.Sequence;
/**
* Keafmd
*
* @ClassName: BubbleSort
* @Description: 冒泡排序
* @author: 牛哄哄的柯南
* @date: 2021-06-24 10:31
*/
public class BubbleSort {
//冒泡排序
public static void bubbleSort(int[] arr, boolean ascending) { //exchange标志表示为升序排序还是降序排序
boolean flag = true; //加一个标志位,记录上一次是否发生了交换,如果是,我们则进行下一轮,如果没有,说明已经冒泡好了
for (int i = 1; i < arr.length && flag; i++) { //控制次数,第几趟排序,只需要n-1趟,有交换时进行,只有flag=false就说明上一次一个元素都没有进行交换
/*System.out.print("第"+i+"次遍历:");
for (int i1 : arr) {
System.out.print(i1+" ");
}
System.out.println();*/
flag = false; //假定未交换
for (int j = 0; j < arr.length - i; j++) {
if (ascending ? arr[j] > arr[j + 1] : arr[j] < arr[j + 1]) { //控制升序还是降序
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
flag = true;
}
}
}
}
//冒泡排序 -- 默认不传参升序
public static void bubbleSort(int[] arr) {
bubbleSort(arr, true);
}
}
测试代码:
升序排序(从小到大)
package com.keafmd.Sequence;
import java.util.*;
import java.util.stream.IntStream;
import java.util.stream.Stream;
/**
* Keafmd
*
* @ClassName: Sort
* @Description: 十大排序算法
* @author: 牛哄哄的柯南
* @date: 2021-06-16 21:27
*/
public class Sort {
public static void main(String[] args) {
int[] nums = {12, 4, 25, 47, 58, 34, 25, 9, 99, 26, 1, -13, 162, 10093, -66, -1};
int[] temparr;
//测试冒泡排序
System.out.println("测试冒泡排序:");
temparr = nums.clone();
BubbleSort.bubbleSort(temparr);
//逆序排序
//BubbleSort.bubbleSort(temparr,false);
for (int i = 0; i < temparr.length; i++) {
System.out.print(temparr[i] + " ");
}
System.out.println();
}
}
运行结果:
测试冒泡排序:
-66 -13 -1 1 4 9 12 25 25 26 34 47 58 99 162 10093
降序排序(从大到小)
//测试冒泡排序
System.out.println("测试冒泡排序:");
temparr = nums.clone();
BubbleSort.bubbleSort(temparr,false);
for (int i = 0; i < temparr.length; i++) {
System.out.print(temparr[i] + " ");
}
System.out.println();
运行结果:
测试冒泡排序:
10093 162 99 58 47 34 26 25 25 12 9 4 1 -1 -13 -66
下面几个算法的测试也就是换了下类名和方法名(换成相应的排序算法),如果想降序就在数组后面传个false即可。我就不一一复制了,我在最下面给出含所有算法的测试类,需要的自取即可。
快速排序
简单解释:
快速排序就是每次找一个基点(第一个元素),然后两个哨兵,一个从最前面往后走,一个从最后面往前面走,如果后面那个哨兵找到了一个比基点大的数停下来,前面那个哨兵找到比基点大的数停下来,然后交换两个哨兵找到的数,如果找不到最后两个哨兵就会碰到一起就结束,最后交换基点和哨兵相遇的地方的元素,然后就将一个序列分为比基点小的一部分和比基点大的一部分,然后递归左半部分和右半部分,最后的结果就是有序的了。
完整代码:
package com.keafmd.Sequence;
/**
* Keafmd
*
* @ClassName: QuickSort
* @Description: 快速排序
* @author: 牛哄哄的柯南
* @date: 2021-06-24 10:32
*/
public class QuickSort {
//快速排序
public static void quickSort(int[] arr) {
quickSort(arr, true);
}
public static void quickSort(int[] arr, boolean ascending) {
if (ascending) {
quickSort(arr, 0, arr.length - 1, true);
} else {
quickSort(arr, 0, arr.length - 1, false);
}
}
public static void quickSort(int[] arr, int begin, int end, boolean ascending) {
if (ascending)
quickSort(arr, begin, end);
else
quickSortDescending(arr, begin, end);
}
//快排序升序 -- 默认
public static void quickSort(int[] arr, int begin, int end) {
if (begin > end) { //结束条件
return;
}
int base = arr[begin];
int i = begin, j = end;
while (i < j) { // 两个哨兵(i左边,j右边)没有相遇
while (arr[j] >= base && i < j) { //哨兵j没找到比base小的
j--;
}
while (arr[i] <= base && i < j) { //哨兵i没找到比base大的
i++;
}
if (i < j) { //如果满足条件则交换
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
//最后将基准为与i和j相等位置的数字交换
arr[begin] = arr[i];
arr[i] = base;
quickSort(arr, begin, i - 1); //递归调用左半数组
quickSort(arr, i + 1, end); //递归调用右半数组
}
//快排序降序
public static void quickSortDescending(int[] arr, int begin, int end) {
if (begin > end) { //结束条件
return;
}
int base = arr[begin];
int i = begin, j = end;
while (i < j) { // 两个哨兵(i左边,j右边)没有相遇
while (arr[j] <= base && i < j) { //哨兵j没找到比base大的
j--;
}
while (arr[i] >= base && i < j) { //哨兵i没找到比base小的
i++;
}
if (i < j) { //如果满足条件则交换
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
//最后将基准为与i和j相等位置的数字交换
arr[begin] = arr[i];
arr[i] = base;
quickSortDescending(arr, begin, i - 1); //递归调用左半数组
quickSortDescending(arr, i + 1, end); //递归调用右半数组
}
}
直接选择排序
简单解释:
数组分为已排序部分(前面)和待排序序列(后面)
第一次肯定所有的数都是待排序的
从待排序的序列中找到最大或最小的那个元素,放到前面的已排序部分,然后一直找,不断缩小待排序的范围,直到所有的数都是已排序的了
完整代码:
package com.keafmd.Sequence;
/**
* Keafmd
*
* @ClassName: SelectSort
* @Description: 选择排序
* @author: 牛哄哄的柯南
* @date: 2021-06-24 10:33
*/
public class SelectSort {
//直接选择排序
public static void selectSort(int[] arr, boolean ascending) {
for (int i = 0; i < arr.length; i++) {
int m = i; //最小值或最小值的下标
for (int j = i + 1; j < arr.length; j++) {
if (ascending ? arr[j] < arr[m] : arr[j] > arr[m]) {
m = j; //找到待排序的数中最小或最大的那个数,记录下标
}
}
//交换位置
int temp = arr[i];
arr[i] = arr[m];
arr[m] = temp;
}
}
public static void selectSort(int[] arr) {
selectSort(arr, true);
}
}
堆排序
先理解下大顶堆和小顶堆,看图
大顶堆,双亲结点的值比每一个孩子结点的值都要大。根结点值最大
小顶堆,双亲结点的值比每一个孩子结点的值都要小。根结点值最小
简单解释:
构建好大顶堆或小顶堆结构,这样最上面的就是最大值或最小值,那么我们取出堆顶元素,然后重新构建结构,一直取,一直重新构建,那么最后达到排序的效果了。
完整代码:
package com.keafmd.Sequence;
/**
* Keafmd
*
* @ClassName: HeapSort
* @Description: 堆排序
* @author: 牛哄哄的柯南
* @date: 2021-06-24 10:34
*/
public class HeapSort {
//堆排序
public static void heapSort(int[] arr) {
//对传入的数组进行建立堆,这里默认建立大顶堆,进行升序排列
heapSort(arr, true);
}
public static void heapSort(int[] arr, boolean maxheap) {
//1.构建大顶堆
for (int i = arr.length / 2 - 1; i >= 0; i--) {
//从第一个非叶子结点从下至上,从右至左调整结构
sift(arr, i, arr.length , maxheap);
}
//2.调整堆结构+交换堆顶元素与末尾元素
for (int j = arr.length - 1; j > 0; j--) {
//现在的数组第一个就是根结点,最小值所在,进行交换,把它放到最右边
int temp = arr[j];
arr[j] = arr[0];
arr[0] = temp;
//重新建立堆
sift(arr, 0, j , maxheap); //重新对堆进行调整
}
}
//建立堆的方法
/**
* 私有方法,只允许被堆排序调用
*
* @param arr 要排序数组
* @param parent 当前的双亲节点
* @param len 数组长度
* @param maxheap 是否建立大顶堆
*/
private static void sift(int[] arr, int parent, int len, boolean maxheap) {
int value = arr[parent]; //先取出当前元素i
for (int child = 2 * parent + 1; child < len; child = child * 2 + 1) { //从parent结点的左子结点开始,也就是2*parent+1处开始
if (child+1 < len && (maxheap ? arr[child] < arr[child + 1] : arr[child] > arr[child + 1])) { //如果左子结点小于右子结点,child指向右子结点
child++; //右孩子如果比左孩子大,我们就将现在的孩子换到右孩子
}
//判断是否符合大顶堆的特性, 如果右孩子大于双亲,自然左孩子也大于双亲,符合
//如果子节点大于父节点,将子节点值赋给父节点(不用进行交换)
if (maxheap ? value < arr[child] : value > arr[child]) {
arr[parent]=arr[child];
parent = child;
}
else {//如果不是,说明已经符合我们的要求了。
break;
}
}
arr[parent] =value; //将value值放到最终的位置
}
}
归并排序
简单解释:
该算法是采用分治法,把数组不断分割,直至成为单个元素,然后比较再合并(合并的过程就是两部分分别从头开始比较,取出最小或最大元素的放到新的区域内,继续取两部分中最大或最小的元素,直到这两部分合并完,最后所有的都合并完,最后形成完整的有序序列)
完整代码:
package com.keafmd.Sequence;
/**
* Keafmd
*
* @ClassName: MergeSort
* @Description: 归并排序
* @author: 牛哄哄的柯南
* @date: 2021-06-24 10:35
*/
public class MergeSort {
//归并排序
public static void mergeSort(int []arr ,boolean ascending){
int[] temp = new int[arr.length]; //在排序前,先建好一个长度等于原数组长度的临时数组,避免递归中频繁开辟空间
mergeSort(arr,0,arr.length-1,temp,ascending);
}
public static void mergeSort(int []arr){
mergeSort(arr,true);
}
/**
*
* @param arr 传入的数组
* @param left 当前子数组的起始下标
* @param right 当前子数组的结束下标
* @param temp 拷贝暂存数组
*/
public static void mergeSort(int []arr,int left,int right,int[] temp,boolean ascending){
if(left<right){ //这里是递归结束的条件,我们是对半分,那当left==right的时候肯定大家都是只有一个元素了。
//对半分,比如总长度是10,left=0,right=9,mid=4确实是中间分了,0~4,5~9
//当长度9,left=0,right=8,mid=4,0~4,5~8
int mid = left + (right-left)/2; // 防止越界的写法
//int mid = (left+right)/2;
mergeSort(arr,left,mid,temp,ascending); //左边归并排序,使得左子序列有序
mergeSort(arr,mid+1,right,temp,ascending); //右边归并排序,使得右子序列有序
merge(arr,left,mid,right,temp,ascending); //将两个有序子数组合并操作
}
}
private static void merge(int[] arr,int left,int mid,int right,int[] temp,boolean ascending){
int i = left; //左序列起始下标
int j = mid+1; //右序列起始下标
int t = 0; //临时数组指针以上是关于经典十大排序算法(含升序降序,基数排序含负数排序)Java版完整代码建议收藏系列的主要内容,如果未能解决你的问题,请参考以下文章