python 对asnyc异步限流
Posted Recar
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python 对asnyc异步限流相关的知识,希望对你有一定的参考价值。
因为对于一些请求如果是异步的话 会产生很大的并发连接量 需要限制一下不然对接api会有频率限制或者打挂了的情况
固定任务队列大小
import asyncio
import random
async def download(code):
wait_time = random.randint(1, 3)
print('downloading {} will take {} second(s)'.format(code, wait_time))
# 发起请求阻塞的地方
await asyncio.sleep(wait_time) # I/O, context will switch to main function
print('downloaded {}'.format(code))
async def main(loop):
# 限制的大小
no_concurrent = 3
# 是装任务的集合 与上面的大小结合来限制大小
dltasks = set()
i = 0
# 9是任务总数
while i < 9:
if len(dltasks) >= no_concurrent:
# Wait for some download to finish before adding a new one
_done, dltasks = await asyncio.wait(
dltasks, return_when=asyncio.FIRST_COMPLETED)
dltasks.add(loop.create_task(download(i)))
i += 1
# Wait for the remaining downloads to finish
await asyncio.wait(dltasks)
当集合任务小于队列大小就加入 并有一个结果就返回一个 return_when=asyncio.FIRST_COMPLETED
会发现队列又出去一个就可以加入进去一个 然后加入来实现限制的方式
使用异步队列Queue来
# download() defined as above
async def download_worker(q):
while True:
# 从队列获取元素
code = await q.get()
await download(code)
# 任务结束
q.task_done()
async def main(loop):
# 创建个异步队列
q = asyncio.Queue()
# 创建三个异步任务
workers = [loop.create_task(download_worker(q)) for _ in range(3)]
i = 0
while i < 9:
# 总数是9 不断放进去队列
await q.put(i)
i += 1
# 阻塞 等待所有任务结束
await q.join() # wait for all tasks to be processed
# 取消掉协程
for worker in workers:
worker.cancel()
# 出现异常也要返回 并且等待所有任务完成
await asyncio.gather(*workers, return_exceptions=True)
还有一种使用async默认的 Semaphore
import asyncio
from random import randint
async def download(code):
wait_time = randint(1, 3)
print('downloading {} will take {} second(s)'.format(code, wait_time))
await asyncio.sleep(wait_time) # I/O, context will switch to main function
print('downloaded {}'.format(code))
# sem是限制的并发数
sem = asyncio.Semaphore(3)
with sem来限制
async def safe_download(i):
async with sem: # semaphore limits num of simultaneous downloads
return await download(i)
async def main():
# 创建任务
tasks = [
asyncio.ensure_future(safe_download(i)) # creating task starts coroutine
for i
in range(9)
]
# 等待所有任务完成
await asyncio.gather(*tasks) # await moment all downloads done
if __name__ == '__main__':
loop = asyncio.get_event_loop()
try:
loop.run_until_complete(main())
finally:
loop.run_until_complete(loop.shutdown_asyncgens())
loop.close()
封装成装饰器来限制
import asyncio
from functools import wraps
def request_concurrency_limit_decorator(limit=3):
# Bind the default event loop
sem = asyncio.Semaphore(limit)
def executor(func):
@wraps(func)
async def wrapper(*args, **kwargs):
async with sem:
return await func(*args, **kwargs)
return wrapper
return executor
# 使用
@request_concurrency_limit_decorator(limit=...)
async def download(...):
...
第三方库
还有一种是使用第三方库来操作
LIST_OF_URLS = ("http://www.google.com", "......")
pool = AioPool(size=3)
await pool.map(your_download_coroutine, LIST_OF_URLS)
https://github.com/gistart/asyncio-pool
参考 https://stackoverflow.com/questions/48483348/how-to-limit-concurrency-with-python-asyncio
以上是关于python 对asnyc异步限流的主要内容,如果未能解决你的问题,请参考以下文章
javascript异步编程之generator(生成器函数)与asnyc/await语法糖
JavaScript:使用 await 使 asnyc 代码看起来更同步 [重复]