一篇文章教小白会Python 绘制Android CPU和内存增长曲线
Posted 苏州程序大白
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了一篇文章教小白会Python 绘制Android CPU和内存增长曲线相关的知识,希望对你有一定的参考价值。
一篇文章教小白会Python 绘制android CPU和内存增长曲线
🏳️🌈目录
😊开讲啦!!!!
在做性能监控的时候,如果能把监控的CPU和内存增长变化用图表展示出来会比较直观,花了点时间用Python实现了下,来看下怎么用Python绘制Android CPU和内存变化曲线,生成增长曲线图表的PNG图片。
🏳️🌈1、实现效果
一开始想通过采集的CPU和内存数据,导出到Excel生成增长曲线图表。做了下调研,并没有比较好的实现方法。后面看了下用Python来绘制图表实现起来挺容易的,而且Python的学习成本低,语法之类的做过开发的稍微看下就知道怎么用,容易上手。
具体实现的效果如下,CPU和内存采集的数据是独立进程的,内存分三块数据,应用总内存,Native内存和Dalvik内存,如果存在内存泄漏,要么在Native,要么在Dalvik,从图表增长曲线上很容易看出来。
🏳️🌈2、具体逻辑实现详解
😉2.1、CPU图表的Python实现
代码如下:
# -*- coding: utf-8 -*-
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import json
import sys
import time
import traceback
def startDump():
try:
cpuData = json.loads(sys.argv[1])
imagePath = sys.argv[2]
cpuRateArray = []
timeArray = []
for cpuItem in cpuData:
cpuRateArray.append(float(cpuItem["cpuRate"]))
timeArray.append((float(float(cpuItem["time"]) - float(cpuData[0]["time"]))/1000))
plt.title("Monitor Cpu Rate")
plt.figure(figsize=(10, 8))
plt.plot(timeArray, cpuRateArray, c='red', label='Process CPU')
plt.ylabel("CPURate (%)", fontsize=12)
plt.xlabel("TimeRange:" + formatTime(float(cpuData[0]["time"])) + ' - ' + formatTime(float(cpuData[len(cpuData) -1]["time"])), fontsize=10)
plt.legend()
plt.tight_layout()
plt.savefig(imagePath)
except Exception:
print 'exeption occur:' + traceback.format_exc()
def formatTime(timeMillis):
timeSeconds = float(timeMillis/1000)
timelocal = time.localtime(timeSeconds)
timeFormat = time.strftime("%Y-%m-%d %H:%M:%S", timelocal)
return timeFormat
if __name__ == '__main__':
startDump()
😉2.2、内存图表的Python实现
代码如下:
# -*- coding: utf-8 -*-
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import json
import sys
import time
import traceback
def startDump():
try:
memoryData = json.loads(sys.argv[1])
imagePath = sys.argv[2]
totalPssArray = []
nativePssArray = []
dalvikPssArray = []
timeArray = []
for memoryItem in memoryData:
totalPssArray.append(float(memoryItem["totalPss"])/1024)
nativePssArray.append(float(memoryItem["nativePss"])/1024)
dalvikPssArray.append(float(memoryItem["dalvikPss"])/1024)
timeArray.append((float(float(memoryItem["time"]) - float(memoryData[0]["time"]))/1000))
plt.title("Monitor Memory")
plt.figure(figsize=(10, 8))
plt.plot(timeArray, totalPssArray, c='red', label='Total Memory')
plt.plot(timeArray, nativePssArray, c='yellow', label='Native Memory')
plt.plot(timeArray, dalvikPssArray, c='blue', label='Dalvik Memory')
plt.ylabel("Memory (MB)", fontsize=12)
plt.xlabel("TimeRange:" + formatTime(float(memoryData[0]["time"])) + ' - ' + formatTime(float(memoryData[len(memoryData) -1]["time"])), fontsize=10)
plt.legend()
plt.tight_layout()
plt.savefig(imagePath)
except Exception:
print 'exeption occur:' + traceback.format_exc()
def formatTime(timeMillis):
timeSeconds = float(timeMillis/1000)
timelocal = time.localtime(timeSeconds)
timeFormat = time.strftime("%Y-%m-%d %H:%M:%S", timelocal)
return timeFormat
if __name__ == '__main__':
startDump()
🏳️🌈3、 实现说明
脚本传入的参数有两个,一个是监控的JSON数据字符串值sys.argv[1],一个是保存的图片文件完整路径sys.argv[2]。关于传入的JSON参数字符串值需要加上单引号修饰,否则会导致解析异常,传入的JSON参数也不能直接是JSON对象,必须转化成字符串,示例调用命令如下:
python dump_chart.py '<JSONString>' cpu_chart.png
1、采样CPU示例数据,time是设备的系统时间戳,CPU的占用率的计算可以查看后面具题写的:Android 性能监控之CPU监控。
[
{
"time": "1589435564442.279053",
"cpuRate": "2.17"
},
{
"time": "1589435565655.333008",
"cpuRate": "3.26"
},
{
"time": "1589435566954.137939",
"cpuRate": "2.52"
},
...
]
2、采样内存示例数据,totalPss、nativePss和dalvikPss值都是从dumpsys meminfo输出的应用内存信息中截取出来的原始数据,对应“TOTAL”、“Native Heap“、”Dalvik Heap“字段的Pss Total值。
[
{
"time": "1589636256923.429932",
"totalPss": 177804,
"nativePss": 27922,
"dalvikPss": 10212
},
{
"time": "1589636258236.298096",
"totalPss": 178021,
"nativePss": 27850,
"dalvikPss": 9990
},
{
"time": "1589636259525.219971",
"totalPss": 177899,
"nativePss": 27742,
"dalvikPss": 9990
},
...
]
😉3.1、实现过程中遇到的问题
1、load方法使用错误
json.load()方法使用错误,应该替换成json.loads()。
exeption occur:Traceback (most recent call last):
File "*******", line 11, in startDump
memoryData = json.load(sys.argv[1])
File "/usr/local/Cellar/python@2/2.7.15_1/Frameworks/Python.framework/Versions/2.7/lib/python2.7/json/__init__.py", line 287, in load
return loads(fp.read(),
AttributeError: 'str' object has no attribute 'read'
2、 JSON字符串对象入参问题
File "******", line 11, in startDump
memoryData = json.loads(sys.argv[1])
File "/usr/local/Cellar/python@2/2.7.15_1/Frameworks/Python.framework/Versions/2.7/lib/python2.7/json/__init__.py", line 339, in loads
return _default_decoder.decode(s)
File "/usr/local/Cellar/python@2/2.7.15_1/Frameworks/Python.framework/Versions/2.7/lib/python2.7/json/decoder.py", line 364, in decode
obj, end = self.raw_decode(s, idx=_w(s, 0).end())
File "/usr/local/Cellar/python@2/2.7.15_1/Frameworks/Python.framework/Versions/2.7/lib/python2.7/json/decoder.py", line 382, in raw_decode
raise ValueError("No JSON object could be decoded")
ValueError: No JSON object could be decoded
针对Python脚本调用,JSON字符串对象作为入参,传入的JSON字符串对象需要加单引号处理,比如在javascript中示例处理如下:
'\\'' + JSON.stringify(cpuRateJSON) + '\\''
3.3、Python需要显示声明参数的类型
在Python中需要指明参数的类型,解析获取到JSON对象中的值之后,Python并不会根据参数来判断是什么类型,需要指明要转化的对象参数类型,比如把系统时间戳转化成float值类型:float(memoryData[0][“time”])
Traceback (most recent call last):
File "*******", line 21, in startDump
timeArray.append(timeStamp(memoryItem["time"]))
File "*******", line 36, in timeStamp
timeStamp = float(timeNum/1000)
TypeError: unsupported operand type(s) for /: 'unicode' and 'int'
🏳️🌈4、编码导致的异常
SyntaxError: Non-ASCII character '\\xe5' in file ******* on line 24, but no encoding declared; see http://python.org/dev/peps/pep-0263/ for details
如果运行之后报如下的异常,说明是编码出问题,在脚本开头加上编码类型声明:
#!usr/bin/python
# -*- coding: utf-8 -*-
🏳️🌈5、保存的文件格式限制
plt.savefig(image_path) 保存的文件格式只能是eps, pdf, pgf, png, ps, raw, rgba, svg, svgz这些,不支持jpg图片的保存。
Traceback (most recent call last):
File "/Users/chenwenguan/Documents/AmapAuto/Project/arc-resources/script/performanceMonitor/dump_cpu_chart_image.py", line 23, in startDump
plt.savefig(image_path)
File "/usr/local/lib/python2.7/site-packages/matplotlib/pyplot.py", line 695, in savefig
res = fig.savefig(*args, **kwargs)
File "/usr/local/lib/python2.7/site-packages/matplotlib/figure.py", line 2062, in savefig
self.canvas.print_figure(fname, **kwargs)
File "/usr/local/lib/python2.7/site-packages/matplotlib/backend_bases.py", line 2173, in print_figure
canvas = self._get_output_canvas(format)
File "/usr/local/lib/python2.7/site-packages/matplotlib/backend_bases.py", line 2105, in _get_output_canvas
.format(fmt, ", ".join(sorted(self.get_supported_filetypes()))))
ValueError: Format 'jpg' is not supported (supported formats: eps, pdf, pgf, png, ps, raw, rgba, svg, svgz)
🏳️🌈6、python-tk 依赖
Traceback (most recent call last):
File "*******", line 2, in <module>
import matplotlib.pyplot as plt
File "/home/arc/.local/lib/python2.7/site-packages/matplotlib/pyplot.py", line 115, in <module>
_backend_mod, new_figure_manager, draw_if_interactive, _show = pylab_setup()
File "/home/arc/.local/lib/python2.7/site-packages/matplotlib/backends/__init__.py", line 63, in pylab_setup
[backend_name], 0)
File "/home/arc/.local/lib/python2.7/site-packages/matplotlib/backends/backend_tkagg.py", line 4, in <module>
from . import tkagg # Paint image to Tk photo blitter extension.
File "/home/arc/.local/lib/python2.7/site-packages/matplotlib/backends/tkagg.py", line 5, in <module>
from six.moves import tkinter as Tk
File "/home/arc/.local/lib/python2.7/site-packages/six.py", line 203, in load_module
mod = mod._resolve()
File "/home/arc/.local/lib/python2.7/site-packages/six.py", line 115, in _resolve
return _import_module(self.mod)
File "/home/arc/.local/lib/python2.7/site-packages/six.py", line 82, in _import_module
__import__(name)
File "/usr/lib/python2.7/lib-tk/Tkinter.py", line 42, in <module>
raise ImportError, str(msg) + ', please install the python-tk package'
缺少python-tk依赖,执行一下命令安装:
sudo apt-get install -y python-tk
🏳️🌈7、 Agg画布初始化配置
Traceback (most recent call last):
File "******", line 22, in startDump
plt.title("ARC Monitor Memory")
File "/home/arc/.local/lib/python2.7/site-packages/matplotlib/pyplot.py", line 1419, in title
return gca().set_title(s, *args, **kwargs)
File "/home/arc/.local/lib/python2.7/site-packages/matplotlib/pyplot.py", line 969, in gca
return gcf().gca(**kwargs)
File "/home/arc/.local/lib/python2.7/site-packages/matplotlib/pyplot.py", line 586, in gcf
return figure()
File "/home/arc/.local/lib/python2.7/site-packages/matplotlib/pyplot.py", line 533, in figure
**kwargs)
File "/home/arc/.local/lib/python2.7/site-packages/matplotlib/backend_bases.py", line 161, in new_figure_manager
return cls.new_figure_manager_given_figure(num, fig)
File "/home/arc/.local/lib/python2.7/site-packages/matplotlib/backends/_backend_tk.py", line 1046, in new_figure_manager_given_figure
window = Tk.Tk(className="matplotlib")
File "/usr/lib/python2.7/lib-tk/Tkinter.py", line 1828, in __init__
self.tk = _tkinter.create(screenName, baseName, className, interactive, wantobjects, useTk, sync, use)
TclError: no display name and no $DISPLAY environment variable
在Mac上运行的时候不会出现这个问题,但在Ubuntu环境下运行的时候就报异常了,官网的解释如下:
When using Matplotlib versions older than 3.1, it is necessary to explicitly instantiate an Agg canvas
在脚本文件开头显示声明Agg使用:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
🏳️🌈8、pyecharts 版本配置问题
如果不是用Python原生方式绘图,而是用pyecharts来绘制图表,要注意下Python版本的匹配。pyecharts v1.0.0 停止对 Python2.7,3.4~3.5 版本的支持和维护,仅支持 Python3.6+。
Traceback (most recent call last):
File "*******", line 11, in <module>
from pyecharts import options as opts
File "/usr/local/lib/python2.7/site-packages/pyecharts/__init__.py", line 1, in <module>
from pyecharts import charts, commons, components, datasets, options, render, scaffold
File "/usr/local/lib/python2.7/site-packages/pyecharts/charts/__init__.py", line 2, in <module>
from ..charts.basic_charts.bar import Bar
File "/usr/local/lib/python2.7/site-packages/pyecharts/charts/basic_charts/bar.py", line 17
series_name: str,
^
SyntaxError: invalid syntax
🏳️🌈9、图像显示不全问题
测试过程中发现依次保存CPU和内存数据,可能会出现其中一张图片显示有缺失,只显示一半图像内容。在matplotlib中,轴Axes的位置以标准化图形坐标指定,可能发生的情况是轴标签、标题、刻度标签等等会超出图形区域,导致显示不全。后面加上tight_layout自适应调用之后问题修复。tight_layout会自动调整子图参数,使之填充整个图像区域。
plt.tight_layout()
❤️🔥后续需要关注的文章:
Android 性能监控之内存监控
Android 性能监控之CPU监控
关注苏州程序大白,持续更新技术分享。谢谢大家支持
以上是关于一篇文章教小白会Python 绘制Android CPU和内存增长曲线的主要内容,如果未能解决你的问题,请参考以下文章
Python实用工具速来!!一篇文章十分钟教你如何使用Python第三方库basemap进行地图绘制
小白都能看懂的实战教程 手把手教你Python Web全栈开发 (DAY 5)
小白都能看懂的实战教程 手把手教你Python Web全栈开发 (DAY 4)
小白都能看懂的实战教程 手把手教你Python Web全栈开发 (DAY 6)