密码学浅尝辄止
Posted 程序dunk
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了密码学浅尝辄止相关的知识,希望对你有一定的参考价值。
个人博客欢迎访问
总结不易,如果对你有帮助,请点赞关注支持一下
微信搜索程序dunk,关注公众号,获取博客源码、数据结构与算法笔记、面试笔试题
文章目录
密码学浅尝辄止
密码学主要研究编制密码 和 破译密码的学科
密码学的主要目的:研究如何隐藏信息并且把信息传递出去的一个学科
密码学的基本概念
密码在我们的生活中有着重要的作用,那么密码究竟来自何方,为何会产生呢?
密码学是网络安全、信息安全、区块链等产品的基础,常见的非对称加密、对称加密、散列函数等,都属于密码学范畴。
密码学有数千年的历史,从最开始的替换法到如今的非对称加密算法,经历了古典密码学,近代密码学和现代密码学三个阶段。密码学不仅仅是数学家们的智慧,更是如今网络空间安全的重要基础。
古典密码学
在古代的战争中,多见使用隐藏信息的方式保护重要的通信资料。比如先把需要保护的信息用化学药水写到纸上,药水干后,纸上看不出任何的信息,需要使用另外的化学药水涂抹后才可以阅读纸上的信息。
这些方法都是在保护重要的信息不被他人获取,但藏信息的方式比较容易被他人识破,例如增加哨兵的排查力度,就会发现其中的猫腻,因而随后发展出了较难破解的古典密码学。
替换法
替换法很好理解,就是用固定的信息将原文替换成无法直接阅读的密文信息。例如将 b 替换成 w ,e 替换成p ,这样bee 单词就变换成了wpp,不知道替换规则的人就无法阅读出原文的含义。
替换法有单表替换和多表替换两种形式。单表替换即只有一张原文密文对照表单,发送者和接收者用这张表单来加密解密。在上述例子中,表单即为:a b c d e - s w t r p 。
多表替换即有多张原文密文对照表单,不同字母可以用不同表单的内容替换。
例如约定好表单为:表单 1:abcde-swtrp 、表单2:abcde-chfhk 、表单 3:abcde-jftou。
规定第一个字母用第三张表单,第二个字母用第一张表单,第三个字母用第二张表单,这时 bee单词就变成了
(312)fpk ,破解难度更高,其中 312 又叫做密钥,密钥可以事先约定好,也可以在传输过程中标记出来。
移位法
移位法就是将原文中的所有字母都在字母表上向后(或向前)按照一个固定数目进行偏移后得出密文,典型的移位法应用有 “ 恺撒密码 ”。
例如约定好向后移动2位(abcde - cdefg),这样 bee 单词就变换成了dgg 。
同理替换法,移位法也可以采用多表移位的方式,典型的多表案例是“维尼吉亚密码”(又译维热纳尔密码),属于多表密码的一种形式。
恺撒加密
中国古代加密
公元683年,唐中宗即位。随后,武则天废唐中宗,立第四子李旦为皇帝,但朝政大事均由她自己专断。裴炎、徐敬业和骆宾王等人对此非常不满。徐敬业聚兵十万,在江苏扬州起兵。裴炎做内应,欲以拆字手段为其传递秘密信息。后因有人告密,裴炎被捕,未发出的密信落到武则天手中。这封密信上只有“青鹅”二字,群臣对此大惑不解。武则天破解了“青鹅”的秘密:“青”字拆开来就是“十二月”,而“鹅”字拆开来就是“我自与”。密信的意思是让徐敬业、骆宾王等率兵于十二月进发,裴炎在内部接应。“青鹅”破译后,裴炎被杀。接着,武则天派兵击败了徐敬业和骆宾王。
外国加密
在密码学中,恺撒密码是一种最简单且最广为人知的加密技术。
凯撒密码最早由古罗马军事统帅盖乌斯·尤利乌斯·凯撒在军队中用来传递加密信息,故称凯撒密码。这是一种位移加密方式,只对26个字母进行位移替换加密,规则简单,容易破解。下面是位移1次的对比:
将明文字母表向后移动1位,A变成了B,B变成了C……,Z变成了A。
同理,若将明文字母表向后移动3位:则A变成了D,B变成了E……,Z变成了C。
字母表最多可以移动25位。凯撒密码的明文字母表向后或向前移动都是可以的,通常表述为向后移动,如果要向前移动1位,则等同于向后移动25位,位移选择为25即可。
它是一种替换加密的技术,明文中的所有字母都在字母表上向后(或向前)按照一个固定数目进行偏移后被替换成密文。
例如,当偏移量是3的时候,所有的字母A将被替换成D,B变成E,以此类推。
这个加密方法是以恺撒的名字命名的,当年恺撒曾用此方法与其将军们进行联系。恺撒密码通常被作为其他更复杂的加密方法中的一个步骤。简单来说就是当秘钥为n,其中一个待加密字符ch,加密之后的字符为ch+n,当ch+n超过’z’时,回到’a’计数。
/**
* @author :zsy
* @date :Created 2021/6/16 23:36
* @description:凯撒加密
*/
public class KaiSerDemo {
public static void main(String[] args) {
String encryptData = encryptKaiser("Hello World", 3);
System.out.println("加密后:" + encryptData);
String decryptDate = decryptKaiSer(encryptData, 3);
System.out.println("解密后:" + decryptDate);
}
public static String encryptKaiser(String orignal, int key) {
StringBuilder builder = new StringBuilder();
char[] chars = orignal.toCharArray();
for (char c : chars) {
//转换为ascii码值
int asciiCode = c;
//偏移数据
asciiCode += key;
//转换回编码
char newChar = (char)asciiCode;
builder.append(newChar);
}
return builder.toString();
}
public static String decryptKaiSer(String encryptData, int key) {
StringBuilder builder = new StringBuilder();
char[] chars = encryptData.toCharArray();
for (char c : chars) {
//转换为ascii码值
int asciiCode = c;
//偏移数据
asciiCode -= key;
//转换回编码
char newChar = (char)asciiCode;
builder.append(newChar);
}
return builder.toString();
}
}
频度分析法破解恺撒加密
密码棒
公元前5世纪的时候,斯巴达人利用一根木棒,缠绕上皮革或者羊皮纸,在上面横向写下信息,解下这条皮带。展开来看,这长串字母没有任何意义。信差可以将这条皮带当成腰带,系在腰上。
然后收件人将这条皮带缠绕在相同的木棒上,就能恢复信息了。
前404年,一位遍体鳞伤的信差来到斯巴达将领利桑德面前,这趟波斯之旅只有他和四位同伴幸存,利桑德接下腰带,缠绕到他的密码棒上,得知波斯的发那巴祖斯准备侵袭他,多亏密码棒利桑德才能够预先防范,击退敌军。
频率分析解密法
加密者选择将组成信息的字母替代成别的字母,比如说将a写成1,这样就不能被解密者直接拿到信息了。
这难不倒解密者,以英文字母为例,为了确定每个英文字母的出现频率,分析一篇或者数篇普通的英文文章,英文字母出现频率最高的是e,接下来是t,然后是a……,然后检查要破解的密文,也将每个字母出现的频率整理出来,假设密文中出现频率最高的字母是j,那么就可能是e的替身,如果密码文中出现频率次高的但是P,那么可能是t的替身,以此类推便就能解开加密信息的内容。这就是频率分析法。
- 将明文字母的出现频率与密文字母的频率相比较的过程
- 通过分析每个符号出现的频率而轻易地破译代换式密码
- 在每种语言中,冗长的文章中的字母表现出一种可对之进行分辨的频率。
- e是英语中最常用的字母,其出现频率为八分之一
创建工具类负责文件的写入和读取
public class Util {
public static void print(byte[] bytes) {
StringBuffer sb = new StringBuffer();
for (int i = 0; i < bytes.length; i++) {
sb.append(bytes[i]).append(" ");
}
System.out.println(sb);
}
public static String file2String(String path) throws IOException {
FileReader reader = new FileReader(new File(path));
char[] buffer = new char[1024];
int len = -1;
StringBuffer sb = new StringBuffer();
while ((len = reader.read(buffer)) != -1) {
sb.append(buffer, 0, len);
}
return sb.toString();
}
public static void string2File(String data, String path){
FileWriter writer = null;
try {
writer = new FileWriter(new File(path));
writer.write(data);
} catch (Exception e) {
e.printStackTrace();
}finally {
if (writer != null) {
try {
writer.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
}
public static String inputStream2String(InputStream in) throws IOException {
int len = -1;
byte[] buffer = new byte[1024];
ByteArrayOutputStream baos = new ByteArrayOutputStream();
while((len = in.read(buffer)) != -1) {
baos.write(buffer, 0, len);
}
baos.close();
return baos.toString("UTF-8");
}
}
破解密码
/**
* 频率分析法破解凯撒密码
*/
public class FrequencyAnalysis {
//英文里出现次数最多的字符
private static final char MAGIC_CHAR = 'e';
//破解生成的最大文件数
private static final int DE_MAX_FILE = 4;
public static void main(String[] args) throws Exception {
//测试1,统计字符个数
//printCharCount("article.txt");
//加密文件
int key = 3;
//encryptFile("article.txt", "article_en.txt", key);
//读取加密后的文件
String artile = Util.file2String("article_en.txt");
//解密(会生成多个备选文件)
decryptCaesarCode(artile, "article_de.txt");
}
public static void printCharCount(String path) throws IOException{
String data = Util.file2String(path);
List<Entry<Character, Integer>> mapList = getMaxCountChar(data);
for (Entry<Character, Integer> entry : mapList) {
//输出前几位的统计信息
System.out.println("字符'" + entry.getKey() + "'出现" + entry.getValue() + "次");
}
}
public static void encryptFile(String srcFile, String destFile, int key) throws IOException {
String artile = Util.file2String(srcFile);
//加密文件
String encryptData = KaiserDemo.encrypt(artile, key);
//保存加密后的文件
Util.string2File(encryptData, destFile);
}
/**
* 破解凯撒密码
* @param input 数据源
* @return 返回解密后的数据
*/
public static void decryptCaesarCode(String input, String destPath) {
int deCount = 0;//当前解密生成的备选文件数
//获取出现频率最高的字符信息(出现次数越多越靠前)
List<Entry<Character, Integer>> mapList = getMaxCountChar(input);
for (Entry<Character, Integer> entry : mapList) {
//限制解密文件备选数
if (deCount >= DE_MAX_FILE) {
break;
}
//输出前几位的统计信息
System.out.println("字符'" + entry.getKey() + "'出现" + entry.getValue() + "次");
++deCount;
//出现次数最高的字符跟MAGIC_CHAR的偏移量即为秘钥
int key = entry.getKey() - MAGIC_CHAR;
System.out.println("猜测key = " + key + ", 解密生成第" + deCount + "个备选文件" + "\\n");
String decrypt = KaiserDemo.decrypt(input, key);
String fileName = "de_" + deCount + destPath;
Util.string2File(decrypt, fileName);
}
}
//统计String里出现最多的字符
public static List<Entry<Character, Integer>> getMaxCountChar(String data) {
Map<Character, Integer> map = new HashMap<Character, Integer>();
char[] array = data.toCharArray();
for (char c : array) {
if(!map.containsKey(c)) {
map.put(c, 1);
}else{
Integer count = map.get(c);
map.put(c, count + 1);
}
}
//输出统计信息
/*for (Entry<Character, Integer> entry : map.entrySet()) {
System.out.println(entry.getKey() + "出现" + entry.getValue() + "次");
}*/
//获取获取最大值
int maxCount = 0;
for (Entry<Character, Integer> entry : map.entrySet()) {
//不统计空格
if (/*entry.getKey() != ' ' && */entry.getValue() > maxCount) {
maxCount = entry.getValue();
}
}
//map转换成list便于排序
List<Entry<Character, Integer>> mapList = new ArrayList<Entry<Character,Integer>>(map.entrySet());
//根据字符出现次数排序
Collections.sort(mapList, new Comparator<Entry<Character, Integer>>(){
@Override
public int compare(Entry<Character, Integer> o1,
Entry<Character, Integer> o2) {
return o2.getValue().compareTo(o1.getValue());
}
});
return mapList;
}
}
字符'#'出现989次
猜测key = -66, 解密生成第1个备选文件
字符'h'出现478次
猜测key = 3, 解密生成第2个备选文件
字符'd'出现344次
猜测key = -1, 解密生成第3个备选文件
字符'w'出现327次
猜测key = 18, 解密生成第4个备选文件
古典密码破解方式
古典密码虽然很简单,但是在密码史上是使用的最久的加密方式,直到“概率论”的数学方法被发现,古典密码就被破解了。
多表的替换法或移位法虽然难度高一些,但如果数据量足够大的话,也是可以破解的。以维尼吉亚密码算法为例,破解方法就是先找出密文中完全相同的字母串,猜测密钥长度,得到密钥长度后再把同组的密文放在一起,使用频率分析法破解。
频率分析
频率分析在数学、物理学和信号处理中是一种分解函数、波形、或者信号的频率组成,以获取频谱的方法。在密码学中,频率分析是指研究字母或者字母组合在文本中出现的频率。应用频率分析可以破解古典密码。
英文单词中字母出现的频率是不同的,e以12.702%的百分比占比最高,z 只占到0.074%,感兴趣的可以去百科查字母频率详细统计数据。如果密文数量足够大,仅仅采用频度分析法就可以破解单表的替换法或移位法。
近代密码学
古典密码的安全性受到了威胁,外加使用便利性较低,到了工业化时代,近现代密码被广泛应用。
恩尼格玛机
恩尼格玛密码机,在密码学史中是一种用于加密与解密文件的密码机。确切地说,恩尼格玛是一系列相似的转子机械的统称,它包括了一系列不同的型号。恩尼格玛在1920年代早期开始被用于商业,也被一些国家的军队与政府采用过,在这些国家中,最著名的是第二次世界大战时的纳粹德国。恩尼格玛密码机的大部分设置都会在一段时间(一般为一天)以后被更换。
恩尼格玛机是二战时期纳粹德国使用的加密机器,后被英国破译,参与破译的人员有被称为计算机科学之父、人工智能之父的图灵。恩尼格玛机使用的加密方式本质上还是移位和替代,只不过因为密码表种类极多,破解难度高,同时加密解密机器化,使用便捷,因而在二战时期得以使用。
现代密码学
HTTPS的通信过程
https通信是建立在SSL连接层之上的请求和响应,客户端将加密组件发送到服务器端,服务端进行匹配后将数字证书等信息发送到客户端,客户端进行证书验证,验证通过后使用非对称加密对数据的密钥进行协商,协商后得到对称的加密密钥,然后使用对称算法进行TCP链接,然后与客户端进行三次握手后,进行数据传输,传输完成后,四次挥手,断开链接,通信结束。
- 客户端和服务器端通过TCP建立来连接,发送https请求
- 服务器响应请求,并将数字证书发送给客户端,数字证书包括公共密钥、域名、申请证书的公司
- 客户端收到服务器端的数字证书之后,会验证数字证书的合法性。
- 如果公钥合格,那么客户端会生成client key,一个用于进行对称加密的密钥,并用服务器的公钥对客户端密钥进行非对称加密。
- 客户端会再次发起请求,将加密之后的客户端密钥发送给服务器
- 服务器接受加密文后,会用私钥对其进行非对称解密,得到客户端秘钥,并使用客户端密钥进行对称加密,生成密钥文并发送
- 客户端收到密文,并使用客户端密钥进行解密获得数据
常见的加密方式
对称加密
对称密码应用了相同的加密密钥和解密密钥。对称密码分为:序列密码(流密码),分组密码(块密码)两种。流密码是对信息流中的每一个元素(一个字母或一个比特)作为基本的处理单元进行加密,块密码是先对信息流分块,再对每一块分别加密。
例如原文为1234567890,流加密即先对1进行加密,再对2进行加密,再对3进行加密……最后拼接成密文;块加密先分成不同的块,如1234成块,5678成块,90XX(XX为补位数字)成块,再分别对不同块进行加密,最后拼接成密文。前文提到的古典密码学加密方法,都属于流加密。
- 采用单钥密码系统的加密方法,同一个密钥可以同时用作信息的加密和解密,这种加密方法称为对称加密,也称为单密钥加密。
- 示例
- 我们现在有一个原文3要发送给B
- 设置密钥为108, 3 * 108 = 324, 将324作为密文发送给B
- B拿到密文324后, 使用324/108 = 3 得到原文
- 常见加密算法
- DES : Data Encryption Standard,即数据加密标准,是一种使用密钥加密的块算法,1977年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),并授权在非密级政府通信中使用,随后该算法在国际上广泛流传开来。
- AES : Advanced Encryption Standard, 高级加密标准 .在密码学中又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。
- 特点
- 加密速度快, 可以加密大文件
- 密文可逆, 一旦密钥文件泄漏, 就会导致数据暴露
- 加密后编码表找不到对应字符, 出现乱码
- 一般结合Base64使用
DES加密解密
加密的秘钥必须为8个字节,原文是8字节的整数倍
/**
* @author :zsy
* @date :Created 2021/6/17 9:51
* @description:Des加密
*/
public class DesDemo {
public static void main(String[] args) throws Exception {
String input = "计算机网络";
//加密密钥
String key = "12345678";
//加密模式
String transformation = "DES";
//加密算法
String algorithm = "DES";
String encryptDES = encryptDES(input, key, transformation, algorithm);
System.out.println("加密后:" + encryptDES);
String decryptDES = decryptDES(encryptDES, key, transformation , algorithm);
System.out.println("解密后:" + decryptDES);
}
private static String encryptDES(String input, String key, String transformation, String algorithm) throws Exception {
//获取加密对象
Cipher cipher = Cipher.getInstance(transformation);
//加密规则
SecretKeySpec sks = new SecretKeySpec(key.getBytes(), algorithm);
//初始化加密模式和算法
cipher.init(Cipher.ENCRYPT_MODE, sks);
//加密
byte[] bytes = cipher.doFinal(input.getBytes());
String encode = Base64.encode(bytes);
return encode;
以上是关于密码学浅尝辄止的主要内容,如果未能解决你的问题,请参考以下文章
修改MySQL密码报错“ERROR 1819 (HY000): Your password does not satisfy the current policy requirements“(代码片段
Express实战 - 应用案例- realworld-API - 路由设计 - mongoose - 数据验证 - 密码加密 - 登录接口 - 身份认证 - token - 增删改查API(代码片段