使用Python,OpenCV进行按位ANDORXOR和NOT
Posted 程序媛一枚~
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用Python,OpenCV进行按位ANDORXOR和NOT相关的知识,希望对你有一定的参考价值。
这篇博客将介绍如何使用OpenCV应用按位AND、OR、XOR和NOT。上一篇学习了如何从图像中裁剪和提取感兴趣的区域(ROI),截取的都是矩形。但是如果想裁剪一个非矩形区域呢?该怎么办?
答案是同时应用位运算和掩蔽。
- AND:当且仅当两个像素都大于零时,按位AND为真。
- OR:如果两个像素中的任何一个大于零,则按位或为真。
- XOR:当且仅当两个像素中的一个大于零,而不是两个都大于零时,按位异或为真。
- NOT:按位NOT反转图像中的“开”和“关”像素。
比较好记的是AND交集、OR并集、XOR并集-交集、NOT——非取反;
1. 效果图
矩形 VS 圆形效果图如下:
AND操作效果图如下,可以看到正方形的边缘丢失了,因为矩形没有圆形覆盖那么大的区域,因此两个像素都没有“开”。
OR操作效果图如下,可以看到矩形和圆形被合并了。
XOR操作效果图如下,可以看到正方形的中心被移走了,因为异或操作不能同时具有大于零的像素。
NOT操作效果图如下,可以看到圆由前景白色背景黑色变成了前景黑色背景白色。
2. 源码
# 对示例图像应用AND、OR、XOR和NOT运算符。
# USAGE
# python opencv_bitwise.py
# 导入必要的包
import numpy as np
import cv2
# 绘制一个矩形
rectangle = np.zeros((300, 300), dtype="uint8")
cv2.rectangle(rectangle, (25, 25), (275, 275), 255, -1)
cv2.imshow("Rectangle", rectangle)
# 绘制一个圆
circle = np.zeros((300, 300), dtype = "uint8")
cv2.circle(circle, (150, 150), 150, 255, -1)
cv2.imshow("Circle", circle)
# 'AND'操作——当输入都是>0的像素时,则得到开操作像素为255白色,否则被设置为关闭,像素为0黑色
# 当且仅当两个像素都大于零时,按位AND为真。
bitwiseAnd = cv2.bitwise_and(rectangle, circle)
cv2.imshow("AND", bitwiseAnd)
cv2.waitKey(0)
# ‘OR’操作得到矩形和圆形的并集,只要有一个>0,就得到255白色,否则为0
# 如果两个像素中的任何一个大于零,则按位“或”为真。
bitwiseOr = cv2.bitwise_or(rectangle, circle)
cv2.imshow("OR", bitwiseOr)
cv2.waitKey(0)
# ‘XOR’是OR的补集,仅当俩个像素有一个>0时,为白色255
bitwiseXor = cv2.bitwise_xor(rectangle, circle)
cv2.imshow("XOR", bitwiseXor)
cv2.waitKey(0)
# ‘NOT’操作:0变成255,255变成0
bitwiseNot = cv2.bitwise_not(circle)
cv2.imshow("NOT", bitwiseNot)
cv2.waitKey(0)
参考
以上是关于使用Python,OpenCV进行按位ANDORXOR和NOT的主要内容,如果未能解决你的问题,请参考以下文章
AI基础python:openCV——图像算术运算:按位运算