什么是textRNN?有什么用途?结构是什么样子的?

Posted Data+Science+Insight

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了什么是textRNN?有什么用途?结构是什么样子的?相关的知识,希望对你有一定的参考价值。

什么是textRNN? 有什么用途?结构是什么样子的?

 

通常,进行文本分类的主要方法有三种:

  • 基于规则特征匹配的方法(如根据喜欢,讨厌等特殊词来评判情感,但准确率低,通常作为一种辅助判断的方法)
  • 基于传统机器学习的方法(特征工程 + 分类算法)
  • 给予深度学习的方法(词向量 + 神经网络)

RNN模型由于具有短期记忆功能,因此天然就比较适合处理自然语言等序列问题,尤其是引入门控机制后,能够解决长期依赖问题,捕获输入样本之间的长距离联系。

尽管RNN模型天然比较适合处理自然语言的问题,可是最近CNN模型有迎头赶上之势。为什么呢?从这次文本分类的任务中可以体会到,RNN模型在运行速度上丝毫不占优势,比CNN模型要慢几倍到十几倍。后一个时间步的输出依赖于前一个时间步的输出,无法进行并行处理,导致模型训练的速度慢,这是一个致命的弱点。而RNN模型引以为傲的能够捕获序列中的长距离依赖关系,已经不再是独门秘诀,因为CNN模型的卷积操作就类似于N-gram,可以捕获上下文关系,而且通过把构建更深层的卷积层,可以捕获更长距离的依赖关系。此外,Transformer横空出世,不仅能够进行并行处理,而且通过自注意力机制能够在任意距离的两个词之间建立依赖关系,大有后浪把前浪拍死在沙滩上的趋势。

另外,从模型预测的准确性来讲,CNN模型的准确性不比RNN模型低,甚至超过了RNN模型。

TextRNN模型依然分为四个模块:1、数据处理模块;2、模型构建模块;3、模型训

以上是关于什么是textRNN?有什么用途?结构是什么样子的?的主要内容,如果未能解决你的问题,请参考以下文章

假设你有一个多层感知机网络(MLP),输入层有10个节点一个单隐层共50个神经元,最后是一个3个神经元的输出层。请问网络的结构是什么样子的使用数学形式进行描述?

编程语言的分类和用途

Java 堆的结构是什么样子的?

Lambda表达式的主要用途是啥?

Wordpress是干啥?主要用途 啥?

云数据仓库是什么样子的?