电子设计中常用的运放电路

Posted 嵌入式基地

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了电子设计中常用的运放电路相关的知识,希望对你有一定的参考价值。

关注v-x-公-众-号:【嵌入式基地
后-台-回-复:【电赛】 即可获资料
回复【编程】即可获取
包括有:C、C++、C#、JAVA、Python、javascriptphp、数据库、微信小程序、人工智能、嵌入式、Linux、Unix、QT、物联网、算法导论、大数据等资料

在这里插入图片描述
原文链接 点击查看

5个G的计算机,电子专业书籍分享。
链接:https://pan.baidu.com/s/1y8BnUlGmiJMujLlTyrhznA
提取码:j9na

  • 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB以上。而运放的输出电压是有限的,一般在 10V~14V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于短路。开环电压放大倍数越大,两输入端的电位越接近相等。虚短是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。

  • 由于运放的差模输入电阻也很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。虚断是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性 称为虚假开路,简称虚断。显然不能将两输入端真正断路。

  • 在分析运放电路工作原理时,首先请暂时忘掉同向放大、反向放大、加法器、减法器、差动输入……暂时忘掉那些输入输出关系的公式……这些东西只会干扰你,让你更糊涂;也暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

反向放大器

在这里插入图片描述

  • 运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。

  • 流过R1的电流:I1 = (Vi - V-)/R1

  • 流过R2的电流:I2 = (V- - Vout)/R2

  • V- = V+ = 0

I1 = I2

  • Vout = (-R2/R1)*Vi 这就是反向放大器的输入输出关系式

同向放大器

在这里插入图片描述

  • Vi与V-虚短,则 Vi = V-

  • 因为虚断,反向输入端没有电流输入输出,通过R1和R2 的电流相等。

  • 设此电流为I,由欧姆定律得:I = Vout/(R1+R2)

  • Vi等于R2上的分压, 即:Vi = I*R2

  • Vout=Vi*(R1+R2)/R2 这就是同向放大器的公式

加法器1

在这里插入图片描述

  • 由虚短知:V- = V+ = 0

  • 由虚断及基尔霍夫定律知,通过R2与R1的电流之和等于通过R3的电流,故 (V1 – V-)/R1 + (V2 – V-)/R2 = (V- –Vout)/R3

  • V1/R1 + V2/R2 = Vout/R3

  • 若取R1=R2=R3,则上式变为-Vout=V1+V2

加法器2

图片在这里插入图片描述

  • 因为虚断,运放同向端没有电流流过,则流过R1和R2的电流相等,同理流过R4和R3的电流也相等。

  • (V1 – V+)/R1 = (V+ - V2)/R2

  • (Vout – V-)/R3 = V-/R4

  • 由虚短知:V+ = V-

  • 如果R1=R2,R3=R4,则由以上式子可以推导出 V+ = (V1 + V2)/2 V- = Vout/2 故 Vout = V1 + V2

减法器

在这里插入图片描述

  • 通过R1的电流等于通过R2的电流,同理通过R4的电流等于R3的电流

  • (V2 – V+)/R1 = V+/R2

  • (V1 – V-)/R4 = (V- - Vout)/R3

  • 如果R1=R2, 则V+ = V2/2

  • 如果R3=R4, 则V- = (Vout + V1)/2

  • 由虚短知 V+ = V-

  • Vout=V2-V1

积分电路

在这里插入图片描述

  • 由虚短知,反向输入端的电压与同向端相等

  • 由虚断知,通过R1的电流与通过C1的电流相等。

  • 通过R1的电流 i=V1/R1

  • 通过C1的电流i=CdUc/dt=-CdVout/dt

  • Vout=((-1/(R1*C1))∫V1dt 输出电压与输入电压对时间的积分成正比,即积分电路公式

  • 若V1为恒定电压U,则上式变换为Vout = -Ut/(R1C1) t 是时间,则Vout输出电压是一条从0至负电源电压按时间变化的直线。

微分电路

在这里插入图片描述

  • 由虚断知,通过电容C1和电阻R2的电流是相等的

  • 由虚短知,运放同向端与反向端电压是相等的。

  • Vout = -i * R2 = -(R2*C1)dV1/dt

  • 如果V1是一个突然加入的直流电压,则输出Vout对应一个方向与V1相反的脉冲。

差分放大电路

在这里插入图片描述

  • 由虚短知 Vx = V1 ……a

  • Vy = V2 ……b

  • 由虚断知,运放输入端没有电流流过,则R1、R2、R3可视为串联,通过每一个电阻的电流是相同的。

  • 电流I=(Vx-Vy)/R2 ……c

  • Vo1-Vo2=I*(R1+R2+R3) = (Vx-Vy)(R1+R2+R3)/R2 ……d

  • 由虚断知,流过R6与流过R7的电流相等,若R6=R7, 则Vw = Vo2/2 ……e

  • 同理若R4=R5,则Vout – Vu = Vu – Vo1,故Vu = (Vout+Vo1)/2 ……f

  • 由虚短知,Vu = Vw ……g

  • 由efg得 Vout = Vo2 – Vo1 ……h

  • 由dh得 Vout = (Vy –Vx)(R1+R2+R3)/R2 上式中(R1+R2+R3)/R2是定值,此值确定了差值(Vy –Vx)的放大倍数。

电流检测

在这里插入图片描述

分析一个会经常接触的电路。很多控制器接受来自各种检测仪表的020mA或420mA电流,电路将此电流转换成电压后再送ADC转换成数字信号,上图就是这样一个典型电路。如图420mA电流流过采样100Ω电阻R1,在R1上会产生0.42V的电压差。由虚断知,运放输入端没有电流流过,则流过R3和R5的电流相等,流过R2和R4的电流相等。故:

  • (V2-Vy)/R3 = Vy/R5 ……a

  • (V1-Vx)/R2 = (Vx-Vout)/R4 ……b

  • 由虚短知:Vx = Vy ……c

  • 电流从0~20mA变化,则V1 = V2 + (0.4~2) ……d

  • 由cd式代入b式得(V2 + (0.4~2)-Vy)/R2 = (Vy-Vout)/R4 ……e

  • 如果R3=R2,R4=R5,则由e-a得Vout = -(0.4~2)R4/R2 ……f

  • 图中R4/R2=22k/10k=2.2,则f式Vout = -(0.88~4.4)V,

  • 即,将4~20mA电流转换成了-0.88 ~ -4.4V电压,此电压可以送ADC去处理

  • 若将图九电流反接既得 Vout = +(0.88~4.4)V

电压电流转换检测

在这里插入图片描述

电流可以转换成电压,电压也可以转换成电流。上图就是这样一个电路。上图的负反馈没有通过电阻直接反馈,而是串联了三极管Q1的发射结,不要以为是一个比较器。只要是放大电路,虚短虚断的规律仍然是符合的。

  • 由虚断知,运放输入端没有电流流过

  • (Vi – V1)/R2 = (V1 – V4)/R6 ……a

  • (V3 – V2)/R5 = V2/R4 ……b

  • 由虚短知 V1 = V2 ……c

  • 如果R2=R6,R4=R5,则由abc式得V3-V4=Vi

  • 上式说明R7两端的电压和输入电压Vi相等,则通过R7的电流I=Vi/R7,如果负载RL<<100KΩ,则通过Rl和通过R7的电流基本相同。

以上是关于电子设计中常用的运放电路的主要内容,如果未能解决你的问题,请参考以下文章

全套完结模拟电子技术基础——全套实验手册及仿真工艺实习建议保存

带你理解运算放大器

常用运放选型一览表

硬件工程师必备电路设计工具。进来,考考你?

蜂鸣器驱动电路的改进设计

电子胸牌电路设计