元胞自动机基于元胞自动机模拟交通事故道路通行量matlab源码

Posted MatlabQQ1575304183

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了元胞自动机基于元胞自动机模拟交通事故道路通行量matlab源码相关的知识,希望对你有一定的参考价值。

一、简介

元胞自动机(CA)是一种用来仿真局部规则和局部联系的方法。典型的元胞自动机是定义在网格上的,每一个点上的网格代表一个元胞与一种有限的状态。变化规则适用于每一个元胞并且同时进行。典型的变化规则,决定于元胞的状态,以及其( 4 或 8 )邻居的状态。
1 对元胞自动机的初步认识
元胞自动机(CA)是一种用来仿真局部规则和局部联系的方法。典型的元
胞自动机是定义在网格上的,每一个点上的网格代表一个元胞与一种有限的状
态。变化规则适用于每一个元胞并且同时进行。
2 元胞的变化规则&元胞状态
典型的变化规则,决定于元胞的状态,以及其( 4 或 8 )邻居的状态。
3 元胞自动机的应用
元胞自动机已被应用于物理模拟,生物模拟等领域。
4 元胞自动机的matlab编程
结合以上,我们可以理解元胞自动机仿真需要理解三点。一是元胞,在matlab中可以理解为矩阵中的一点或多点组成的方形块,一般我们用矩阵中的一点代表一个元胞。二是变化规则,元胞的变化规则决定元胞下一刻的状态。三是元胞的状态,元胞的状态是自定义的,通常是对立的状态,比如生物的存活状态或死亡状态,红灯或绿灯,该点有障碍物或者没有障碍物等等。

二、源代码

% main.m
%
% This is a main script to simulate the approach, service, and departure of 
% vehicles passing through a toll plaza, , as governed by the parameters 
% defined below
%
%   iterations      =  the maximal iterations of simulation
%   B               =  number booths
%   L               =  number lanes in highway before and after plaza
%   Arrival         =  the mean total number of cars that arrives 
%   plazalength     =  length of the plaza
%   Service         =  Service rate of booth
%   plaza           =  plaza matrix
%                      1 = car, 0 = empty, -1 = forbid, -3 = empty&booth
%   v               =  velocity matrix
%   vmax            =  max speed of car
%   time            =  time matrix, to trace the time that the car cost to
%                      pass the plaza.
%   dt              =  time step
%   t_h             =  time factor
%   departurescount =  number of cars that departure the plaza in the step
%   departurestime  =  time cost of the departure cars
%   influx          =  influx vector
%   outflux         =  outflux vector
%   timecost        =  time cost of all car
%   h               =  handle of the graphics
%   
% zhou lvwen: zhou.lv.wen@gmail.com
 
 
clear;clc
iterations = 1200; % the maximal iterations of simulation
B = 3; % number booths
L = 3; % number lanes in highway before and after plaza
Arrival=3; % the mean total number of cars that arrives 
 
plazalength = 81; % length of the plaza
[plaza, v, time,buspla] = create_plaza(B, L, plazalength);
h = show_plaza(plaza,buspla, NaN, 0.01);
 
timeblock=5;
dt = 0.2; % time step
t_h = 1; % time factor
vmax = 2; % max speed
vinit=1;%initial speed
 
busstop=6*ones(plazalength,B+2);
carstop=3*ones(plazalength,B+2);
 
timecost = [];
sf=0;%switchflag
for i = 1:iterations
    if i==14
        ss=0;
    end
    if i==370
        ss=0;
    end
    function [plaza, v, time,buspla] = move_forward(plaza, v, time, vmax,buspla)
% 
% move_forward   car move forward governed by NS algorithm:
%
% 1. Acceleration. If the vehicle can speed up without hitting the speed limit
% vmax it will add one to its velocity, vn -> vn + 1. Otherwise, the vehicle 
% has constant speed, vn -> vn .
%
% 2. Collision prevention. If the distance between the vehicle and the car ahead
% of it, dn , is less than or equal to vn , i.e. the nth vehicle will collide
% if it doesn鈥檛 slow down, then vn -> dn 鈭?1.
%
% 3. Random slowing. Vehicles often slow for non-traffic reasons (cell phones,
% coffee mugs, even laptops) and drivers occasionally make irrational choices.
% With some probability pbrake , vn -> vn 鈭?1, presuming vn > 0.
%
% 4. Vehicle movement. The vehicles are deterministically moved by their velocities, 
% xn -> xn + vn.
%
% USAGE: [plaza, v, time] = move_forward(plaza, v, time, vmax)
%        plaza = plaza matrix
%                1 = car, 0 = empty, -1 = forbid, -3 = empty&booth
%        v = velocity matrix
%        time = time matrix, to trace the time that the car cost to pass the plaza.
%        vmax = max speed of car
%
% zhou lvwen: zhou.lv.wen@gmail.com
 
Service = 0.8; % Service rate
dt = 0.2; % time step
 
% Prob acceleration
probac = 0.7;
% Prob deceleration
probdc = 1;
% Prob of random deceleration
probrd = 0.3;
t_h = 1; % time factor
 
[L,W] = size(plaza);
%bus
% b=find(plaza==-3);
% bf=b(find(plaza(b-1)==-3));
% for i=2:length(bf)
%     if bf(i)-bf(i-1)==1
%         for k=i:length(bf)-1
%             bf(k)=bf(k+1);
%         end
%     end
% % end
% bb=bf-1;
    
% for i=1:length(bf)
% if plaza(bf(i)+1)==0
% if bf~=404&bf~=303
%    %no crushing
%    if plaza(bf(i)+1)==0
%         plaza(bf(i)+1)=-3;
%         plaza(bb(i))=0;
%         v(bf(i)+1)=v(bf(i));
%         v(bb(i)+1)=v(bb(i));
%    end
%    if plaza(bf(i)+1)~=0&&plaza((bf(i))-L)==0&&plaza((bb(i))-L)==0
%         plaza(bf(i))=0;
%         plaza(bb(i))=0;
%         plaza(bf(i)-L)=-3;
%         plaza(bb(i)-L)=-3;
%         v(bf(i))=0;
%         v(bb(i))=0;
%         v(bf(i)-L)=0;
%         v(bb(i)-L)=0;
%    elseif plaza(bf(i)-L)~=0&(plaza(bf(i)+1)==1|plaza(bf(i)+1)==-3|plaza(bf(i)+1)==-1)
%         v(bf(i))=0;
%         v(bb(i))=0;
%    end
% else
% plaza(b(bf))=0;
% plaza(b(bb))=0;
% v(b(bf))=0;
% v(b(bb))=0;
% end
% end
% end
 
 
 
% gap measurement for car in (i,j)
gap = zeros(L,W);
f=find(plaza==1);
 
for k=1:length(f)
    d = plaza(:,ceil(f(k)/(L)));
    gap(f(k)) = min(find([d(rem(f(k),L)+1:end)~=0;1]))-1;
end
gap(end,:) = 0;
 
% update rules for speed:
% 1 Speed up, provided room
k = find((gap(f) > v(f)*t_h) & (v(f) + 1 <= vmax) & (rand(size(f)) <= probac));
v(f(k)) = v(f(k)) + 1;
% 2 No crashing
k = find((v(f)*t_h >(gap(f))) & (rand(size(f)) <= probdc));
for i=1:length(k)
if buspla(f(k(i)))~=2&&f(k(i))~=161&&f(k(i))~=242&&f(k(i))~=343
v(f(k))=gap(f(k));
end
end
% 3 Random decel
k = find((gap(f)<1) & (rand(size(f)) <= probdc));
for i=1:length(k)
if buspla(f(k(i)))~=2
v(f(k))=max(v(f(k)) - 1,0);
end
end

三、运行结果

在这里插入图片描述

四、备注

完整代码或者仿真咨询添加QQ1575304183

以上是关于元胞自动机基于元胞自动机模拟交通事故道路通行量matlab源码的主要内容,如果未能解决你的问题,请参考以下文章

元胞自动机模拟交通事故道路通行量matlab源码

元胞自动机基于元胞自动机模拟城市小区开放对周边道路通行的影响研究matlab源码

元胞自动机基于matlab元胞自动机求解城市小区开放对周边道路通行影响研究含Matlab源码 233期

元胞自动机基于matlab元胞自动机交通事故通行含Matlab源码 175期

毕设题目:Matlab元胞自动机交通流

元胞自动机基于二维元胞自动机规则模拟交通流matlab 源码