大数据之Hadoop(MapReduce):数据清洗(ETL)

Posted 浊酒南街

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据之Hadoop(MapReduce):数据清洗(ETL)相关的知识,希望对你有一定的参考价值。

1.数据清洗(ETL)

在运行核心业务MapReduce程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据。清理的过程往往只需要运行Mapper程序,不需要运行Reduce程序;

2.数据清洗案例实操

2.1:需求

去除日志中字段长度小于等于11的日志。
(1)输入数据 web.log
web.log

(2)期望输出数据
每行字段长度都大于11。

2.2:需求分析

需要在Map阶段对输入的数据根据规则进行过滤清洗。

2.3:实现代码

(1)编写LogMapper类

package com.jinghang.mapreduce.weblog;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class LogMapper extends Mapper<LongWritable, Text, Text, NullWritable>{
	
	Text k = new Text();
	
	@Override
	protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
		
		// 1 获取1行数据
		String line = value.toString();
		
		// 2 解析日志
		boolean result = parseLog(line,context);
		
		// 3 日志不合法退出
		if (!result) {
			return;
		}
		
		// 4 设置key
		k.set(line);
		
		// 5 写出数据
		context.write(k, NullWritable.get());
	}

	// 2 解析日志
	private boolean parseLog(String line, Context context) {

		// 1 截取
		String[] fields = line.split(" ");
		
		// 2 日志长度大于11的为合法
		if (fields.length > 11) {

			// 系统计数器
			context.getCounter("map", "true").increment(1);
			return true;
		}else {
			context.getCounter("map", "false").increment(1);
			return false;
		}
	}
}

(2)编写LogDriver类

package com.jinghang.mapreduce.weblog;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class LogDriver {

	public static void main(String[] args) throws Exception {

// 输入输出路径需要根据自己电脑上实际的输入输出路径设置
        args = new String[] { "e:/input/inputlog", "e:/output1" };

		// 1 获取job信息
		Configuration conf = new Configuration();
		Job job = Job.getInstance(conf);

		// 2 加载jar包
		job.setJarByClass(LogDriver.class);

		// 3 关联map
		job.setMapperClass(LogMapper.class);

		// 4 设置最终输出类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(NullWritable.class);

		// 设置reducetask个数为0
		job.setNumReduceTasks(0);

		// 5 设置输入和输出路径
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));

		// 6 提交
		job.waitForCompletion(true);
	}
}

以上是关于大数据之Hadoop(MapReduce):数据清洗(ETL)的主要内容,如果未能解决你的问题,请参考以下文章

大数据之Hadoop(MapReduce): MapReduce概述

大数据之Hadoop(MapReduce):MapReduce核心思想

大数据之Hadoop(MapReduce):Hadoop企业优化

大数据之Hadoop(MapReduce):MapReduce开发总结

大数据技术之Hadoop(MapReduce)概述序列化

大数据技术之Hadoop(MapReduce)概述序列化