LeetCode 354. 俄罗斯套娃信封问题
Posted 数据结构和算法
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LeetCode 354. 俄罗斯套娃信封问题相关的知识,希望对你有一定的参考价值。
截止到目前我已经写了 500多道算法题,其中部分已经整理成了pdf文档,目前总共有1000多页(并且还会不断的增加),大家可以免费下载
下载链接:https://pan.baidu.com/s/1hjwK0ZeRxYGB8lIkbKuQgQ
提取码:6666
最长上升子序列的计算这里就不在赘述,具体可以看下《413,动态规划求最长上升子序列》,我们来看下这题的最终代码。
public int maxEnvelopes(int[][] envelopes) {
//边界条件判断
if (envelopes == null || envelopes.length == 0)
return 0;
//先对信封进行排序
Arrays.sort(envelopes, (int[] arr1, int[] arr2) -> {
if (arr1[0] == arr2[0])
return arr2[1] - arr1[1];
else
return arr1[0] - arr2[0];
});
return lengthOfLIS(envelopes);
}
//求最长上升子序列
public int lengthOfLIS(int[][] nums) {
int[] dp = new int[nums.length];
//初始化数组dp的每个值为1
Arrays.fill(dp, 1);
int max = 1;
for (int i = 1; i < nums.length; i++) {
for (int j = 0; j < i; j++) {
//如果当前值nums[i]大于nums[j],说明nums[i]可以和
//nums[j]结尾的上升序列构成一个新的上升子序列
if (nums[i][1] > nums[j][1]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
//记录构成的最大值
max = Math.max(max, dp[i]);
}
return max;
}
public int maxEnvelopes(int[][] envelopes) {
//边界条件判断
if (envelopes == null || envelopes.length == 0)
return 0;
//先对信封进行排序
Arrays.sort(envelopes, (int[] arr1, int[] arr2) -> {
if (arr1[0] == arr2[0])
return arr2[1] - arr1[1];
else
return arr1[0] - arr2[0];
});
return lengthOfLIS(envelopes);
}
//最长上升子序列
public int lengthOfLIS(int[][] nums) {
//list中保存的是构成的上升子序列
ArrayList<Integer> list = new ArrayList<>(nums.length);
for (int[] num : nums) {
//如果list为空,我们直接把num加进去。如果list的最后一个元素小于num,
//说明num加入到list的末尾可以构成一个更长的上升子序列,我们就把num
//加入到list的末尾
if (list.size() == 0 || list.get(list.size() - 1) < num[1])
list.add(num[1]);
else {
//如果num不小于list的最后一个元素,我们就用num把list中第一
//个大于他的值给替换掉,这样我们才能保证list中的元素在长度不变
//的情况下,元素值尽可能的小
int i = Collections.binarySearch(list, num[1]);
//因为list是从小到大排序的,并且上面使用的是二分法查找。当i大
//于0的时候,说明出现了重复的,我们直接把他替换即可,如果i小于
//0,我们对i取反,他就是list中第一个大于num值的位置,我们把它
//替换即可
list.set((i < 0) ? -i - 1 : i, num[1]);
}
}
return list.size();
}
对于二分法查找的代码可以看下《202,查找-二分法查找》,也可以看下官方提供的代码
/**
* Searches the specified list for the specified object using the binary
* search algorithm. The list must be sorted into ascending order
* according to the {@linkplain Comparable natural ordering} of its
* elements (as by the {@link #sort(List)} method) prior to making this
* call. If it is not sorted, the results are undefined. If the list
* contains multiple elements equal to the specified object, there is no
* guarantee which one will be found.
*
* <p>This method runs in log(n) time for a "random access" list (which
* provides near-constant-time positional access). If the specified list
* does not implement the {@link RandomAccess} interface and is large,
* this method will do an iterator-based binary search that performs
* O(n) link traversals and O(log n) element comparisons.
*
* @param <T> the class of the objects in the list
* @param list the list to be searched.
* @param key the key to be searched for.
* @return the index of the search key, if it is contained in the list;
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
* <i>insertion point</i> is defined as the point at which the
* key would be inserted into the list: the index of the first
* element greater than the key, or <tt>list.size()</tt> if all
* elements in the list are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
* @throws ClassCastException if the list contains elements that are not
* <i>mutually comparable</i> (for example, strings and
* integers), or the search key is not mutually comparable
* with the elements of the list.
*/
public static <T>
int binarySearch(List<? extends Comparable<? super T>> list, T key) {
if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
return Collections.indexedBinarySearch(list, key);
else
return Collections.iteratorBinarySearch(list, key);
}
private static <T>
int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key) {
int low = 0;
int high = list.size()-1;
while (low <= high) {
int mid = (low + high) >>> 1;
Comparable<? super T> midVal = list.get(mid);
int cmp = midVal.compareTo(key);
if (cmp < 0)
low = mid + 1;
else if (cmp > 0)
high = mid - 1;
else
return mid; // key found
}
return -(low + 1); // key not found
}
以上是关于LeetCode 354. 俄罗斯套娃信封问题的主要内容,如果未能解决你的问题,请参考以下文章