[新星计划]导师嫌我Sql写的太low?要求我重写还加了三个需求?——二战Spark电影评分数据分析

Posted ChinaManor

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[新星计划]导师嫌我Sql写的太low?要求我重写还加了三个需求?——二战Spark电影评分数据分析相关的知识,希望对你有一定的参考价值。

引言

大家好,我是ChinaManor,直译过来就是中国码农的意思,俺希望自己能成为国家复兴道路的铺路人,大数据领域的耕耘者,平凡但不甘于平庸的人。

在这里插入图片描述
Spark综合练习——电影评分数据分析
在这里插入图片描述

这是我的上篇博文,当时仅是做了一个实现案例(demo级别 ),没想到居然让我押中了题,还让我稳稳的及格了(这次测试试卷难度极大,考60分都能在班上排进前10
不过我在复盘的时候,发现自己的致命弱点:写sql的能力太菜了。。在这里插入图片描述
于是我重做了一遍,并满足了导师提的3个需求:

需求1: 查找电影评分个数超过50,且平均评分较高的前十部电影名称及其对应的平均评分
需求2: 查找每个电影类别及其对应的平均评分
需求3: 查找被评分次数较多的前十部电影

数据介绍:使用的文件movies.csv和ratings.csv

movies.csv该文件是电影数据,对应的为维表数据,其数据格式为
movieId title genres
电影id 电影名称 电影所属分类
样例数据如下所示:逗号分隔
1,Toy Story (1995),Adventure|Animation|Children|Comedy|Fantasy

ratings.csv该文件为定影评分数据,其数据格式为
userId movieId rating timestamp
电影id 电影名称 电影所属分类 时间戳

建表语句

CREATE DATABASE db_movies;
USE db_movies;
CREATE TABLE `ten_movies_avgrating` (

  `id` int(11) NOT NULL AUTO_INCREMENT COMMENT '自增id',

  `movieId` int(11) NOT NULL COMMENT '电影id',

  `ratingNum` int(11) NOT NULL COMMENT '评分个数',

  `title` varchar(100) NOT NULL COMMENT '电影名称',

  `avgRating` decimal(10,2) NOT NULL COMMENT '平均评分',

  `update_time` datetime DEFAULT CURRENT_TIMESTAMP COMMENT '更新时间',

  PRIMARY KEY (`id`),

  UNIQUE KEY `movie_id_UNIQUE` (`movieId`)

) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

CREATE TABLE `genres_average_rating` (

  `id` int(11) NOT NULL AUTO_INCREMENT COMMENT '自增id',

  `genres` varchar(100) NOT NULL COMMENT '电影类别',

  `avgRating` decimal(10,2) NOT NULL COMMENT '电影类别平均评分',

  `update_time` datetime DEFAULT CURRENT_TIMESTAMP COMMENT '更新时间',

  PRIMARY KEY (`id`),

  UNIQUE KEY `genres_UNIQUE` (`genres`)

) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

CREATE TABLE `ten_most_rated_films` (

  `id` int(11) NOT NULL AUTO_INCREMENT COMMENT '自增id',

  `movieId` int(11) NOT NULL COMMENT '电影Id',

  `title` varchar(100) NOT NULL COMMENT '电影名称',

  `ratingCnt` int(11) NOT NULL COMMENT '电影被评分的次数',

  `update_time` datetime DEFAULT CURRENT_TIMESTAMP COMMENT '更新时间',

  PRIMARY KEY (`id`)

) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;



项目结构一览图

在这里插入图片描述

由题意可知

先创建实体类,字段是从建表语句中得来的。
在这里插入图片描述
Entry.scala

package cn.movies.Packet

/**
  * @author ChinaManor
  *         #Description Entry
  *         #Date: 6/6/2021 17:23
  */
object Entry {
  case class Movies(
                     movieId: String, // 电影的id
                     title: String, // 电影的标题
                     genres: String // 电影类别
                   )
  case class Ratings(
                      userId: String, // 用户的id
                      movieId: String, // 电影的id
                      rating: String, // 用户评分
                      timestamp: String // 时间戳
                    )
  // 需求1mysql结果表
  case class tenGreatestMoviesByAverageRating(
                                               movieId: String, // 电影的id
                                               ratingNum:String,
                                               title: String, // 电影的标题
                                               avgRating: String // 电影平均评分
                                             )
  // 需求2MySQL结果表
  case class topGenresByAverageRating(
                                       genres: String, //电影类别
                                       avgRating: String // 平均评分
                                     )
  // 需求3MySQL结果表
  case class tenMostRatedFilms(
                                movieId: String, // 电影的id
                                title: String, // 电影的标题
                                ratingCnt: String // 电影被评分的次数
                              )
}

再创建个表结构~~在这里插入图片描述
Schema.scala

package cn.movies.Packet

import org.apache.spark.sql.types.{DataTypes, StructType}

/**
  * @author ChinaManor
  *         #Description Schema
  *         #Date: 6/6/2021 17:34
  */
object Schema {
  class SchemaLoader {

    // movies数据集schema信息

    private val movieSchema = new StructType()
      .add("movieId", DataTypes.StringType, false)
      .add("title", DataTypes.StringType, false)
      .add("genres", DataTypes.StringType, false)
    // ratings数据集schema信息

    private val ratingSchema = new StructType()

      .add("userId", DataTypes.StringType, false)
      .add("movieId", DataTypes.StringType, false)
      .add("rating", DataTypes.StringType, false)
      .add("timestamp", DataTypes.StringType, false)

    def getMovieSchema: StructType = movieSchema
    def getRatingSchema: StructType = ratingSchema
  }
}

然后开始写Main方法,其实只有区区八十行代码。。。

spark总要有实例对象吧。

// 创建spark session
    val spark = SparkSession
      .builder
      .appName(this.getClass.getSimpleName.stripSuffix("$"))
      .master("local[4]")
      .getOrCreate

然后 new个schema信息

val schemaLoader = new SchemaLoader

然后尝试读取csv文件,
// 读取Movie数据集
val movieDF: DataFrame = readCsvIntoDataSet(spark, MOVIES_CSV_FILE_PATH, schemaLoader.getMovieSchema)
// 读取Rating数据集
val ratingDF: DataFrame = readCsvIntoDataSet(spark, RATINGS_CSV_FILE_PATH, schemaLoader.getRatingSchema)

发现读取方法和路径都没有,于是补救一下

  // 文件路径
  private val MOVIES_CSV_FILE_PATH = "D:\\\\Users\\\\Administrator\\\\Desktop\\\\exam0601\\\\datas\\\\movies.csv"
  private val RATINGS_CSV_FILE_PATH = "D:\\\\Users\\\\Administrator\\\\Desktop\\\\exam0601\\\\datas\\\\ratings.csv"

  /**

    * 读取数据文件,转成DataFrame
    *
    * @param spark
    * @param path
    * @param schema
    * @return
    */

  def readCsvIntoDataSet(spark: SparkSession, path: String, schema: StructType) = {
    val dataDF: DataFrame = spark.read
      .format("csv")
      .option("header", "true")
      .schema(schema)
      .load(path)
    dataDF
  }

紧接着重头戏来了。。
写sql语句,在大数据行业懂得写sql就等于会了80%
在这里插入图片描述

WITH ratings_filter_cnt AS (
SELECT
     movieId,
     count( * ) AS rating_cnt,
     Round(avg( rating ),2) AS avg_rating
FROM
     ratings
GROUP BY
     movieId
HAVING
     count( * ) >= 50
),
ratings_filter_score AS (
SELECT
     movieId, -- 电影id
     rating_cnt, -- 个数
     avg_rating -- 电影平均评分
FROM ratings_filter_cnt
ORDER BY avg_rating DESC -- 平均评分降序排序
LIMIT 10 -- 平均分较高的前十部电影
)
SELECT
    m.movieId,
    r.rating_cnt AS ratingNum,
    m.title,
    r.avg_rating AS avgRating
FROM
   ratings_filter_score r
JOIN movies m ON m.movieId = r.movieId ORDER BY r.avg_rating DESC

关键点在于
WITH XXX AS SELECT
在这里插入图片描述

最后保存写入mysql表中

 def saveToMysql(reportDF: DataFrame) = {
    // TODO: 使用SparkSQL提供内置Jdbc数据源保存数据
    reportDF
      .coalesce(1)
      .write
      // 追加模式,将数据追加到MySQL表中,再次运行,主键存在,报错异常
      .mode(SaveMode.Append)
      // 覆盖模式,无需测试,直接将以前数据全部删除,再次重新重建表,肯定不行
      //.mode(SaveMode.Overwrite)
      .format("jdbc")
      .option("driver", "com.mysql.jdbc.Driver")
      .option("url", "jdbc:mysql://192.168.88.100:3306/db_movies?serverTimezone=UTC&characterEncoding=utf8&useUnicode=true")
      .option("user", "root")
      .option("password", "123456")
      .option("dbtable", "db_movies.ten_most_rated_films")
      .save()
  }

另外两个需求的SQL:

    // 需求2:查找每个电影类别及其对应的平均评分
WITH explode_movies AS (
SELECT
 movieId,
 title,
 category
FROM
 movies lateral VIEW explode ( split ( genres, "\\\\|" ) ) temp AS category  //爆炸函数拆一下| 
)
SELECT
 m.category AS genres,
 Round(avg( r.rating ),2) AS avgRating
FROM
 explode_movies m
 JOIN ratings r ON m.movieId = r.movieId
GROUP BY
 m.category
ORDER BY avgRating DESC
   // 需求3:查找被评分次数较多的前十部电影
WITH rating_group AS (
    SELECT
       movieId,
       count( * ) AS ratingCnt
    FROM ratings
    GROUP BY movieId
),
rating_filter AS (
    SELECT
       movieId,
       ratingCnt
    FROM rating_group
    ORDER BY ratingCnt DESC
    LIMIT 10
)
SELECT
    m.movieId,
    m.title,
    r.ratingCnt
FROM
    rating_filter r
JOIN movies m ON r.movieId = m.movieId ORDER BY r.ratingCnt DESC

总结

以上便是spark电影评分数据分析二次改写,比之前一篇sql更复杂,需求更多,
希望今晚的考试顺利通关@~@
如果需要完整版的代码可以私信我获取

愿你读过之后有自己的收获,如果有收获不妨一键三连一下~

以上是关于[新星计划]导师嫌我Sql写的太low?要求我重写还加了三个需求?——二战Spark电影评分数据分析的主要内容,如果未能解决你的问题,请参考以下文章

他,连续 3 年担任新星计划导师,这次的内容有点特别

新星计划,一次导师冲击热榜的实操演练

凭什么是你从新星计划里面脱颖而出?答:凭这五点

新星计划·2023-第1期 - Python赛道报名入口 -〖你就是下一个新星〗

新星计划·第三季流量密码公开课

历经一个月的时间,在大家的共同努力下新星计划圆满结束,让我们看一下详细数据吧!