大数据之Hadoop(MapReduce):Join之Reduce Join应用

Posted 浊酒南街

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据之Hadoop(MapReduce):Join之Reduce Join应用相关的知识,希望对你有一定的参考价值。

1.Reduce Join

Map端的主要工作:为来自不同表或文件的key/value对,打标签以区别不同来源的记录。然后用连接字段作为key,其余部分和新加的标签作为value,最后进行输出。
Reduce端的主要工作:在Reduce端以连接字段作为key的分组已经完成,我们只需要在每一个分组当中将那些来源于不同文件的记录(在Map阶段已经打标志)分开,最后进行合并就行了。

2.Reduce Join案例实操

2.1:需求

order.txt 订单数据表t_order
内容如下:

1001	01	1
1002	02	2
1003	03	3
1004	01	4
1005	02	5
1006	03	6

pd.txt 商品信息表t_product

01	小米
02	华为
03	格力

将商品信息表中数据根据商品pid合并到订单数据表中。
在这里插入图片描述

2.2:需求分析

通过将关联条件作为Map输出的key,将两表满足Join条件的数据并携带数据所来源的文件信息,发往同一个ReduceTask,在Reduce中进行数据的串联,如图示
在这里插入图片描述

3.代码实现

1)创建商品和订合并后的Bean类

package com.jinghang.mapreduce.table;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.Writable;

public class TableBean implements Writable {

	private String order_id; // 订单id
	private String p_id;      // 产品id
	private int amount;       // 产品数量
	private String pname;     // 产品名称
	private String flag;      // 表的标记

	public TableBean() {
		super();
	}

	public TableBean(String order_id, String p_id, int amount, String pname, String flag) {

		super();

		this.order_id = order_id;
		this.p_id = p_id;
		this.amount = amount;
		this.pname = pname;
		this.flag = flag;
	}

	public String getFlag() {
		return flag;
	}

	public void setFlag(String flag) {
		this.flag = flag;
	}

	public String getOrder_id() {
		return order_id;
	}

	public void setOrder_id(String order_id) {
		this.order_id = order_id;
	}

	public String getP_id() {
		return p_id;
	}

	public void setP_id(String p_id) {
		this.p_id = p_id;
	}

	public int getAmount() {
		return amount;
	}

	public void setAmount(int amount) {
		this.amount = amount;
	}

	public String getPname() {
		return pname;
	}

	public void setPname(String pname) {
		this.pname = pname;
	}

	@Override
	public void write(DataOutput out) throws IOException {
		out.writeUTF(order_id);
		out.writeUTF(p_id);
		out.writeInt(amount);
		out.writeUTF(pname);
		out.writeUTF(flag);
	}

	@Override
	public void readFields(DataInput in) throws IOException {
		this.order_id = in.readUTF();
		this.p_id = in.readUTF();
		this.amount = in.readInt();
		this.pname = in.readUTF();
		this.flag = in.readUTF();
	}

	@Override
	public String toString() {
		return order_id + "\\t" + pname + "\\t" + amount + "\\t" ;
	}
}

2)编写TableMapper类

package com.jinghang.mapreduce.table;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;

public class TableMapper extends Mapper<LongWritable, Text, Text, TableBean>{

String name;
	TableBean bean = new TableBean();
	Text k = new Text();
	
	@Override
	protected void setup(Context context) throws IOException, InterruptedException {

		// 1 获取输入文件切片
		FileSplit split = (FileSplit) context.getInputSplit();

		// 2 获取输入文件名称
		name = split.getPath().getName();
	}

	@Override
	protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
		
		// 1 获取输入数据
		String line = value.toString();
		
		// 2 不同文件分别处理
		if (name.startsWith("order")) {// 订单表处理

			// 2.1 切割
			String[] fields = line.split("\\t");
			
			// 2.2 封装bean对象
			bean.setOrder_id(fields[0]);
			bean.setP_id(fields[1]);
			bean.setAmount(Integer.parseInt(fields[2]));
			bean.setPname("");
			bean.setFlag("order");
			
			k.set(fields[1]);
		}else {// 产品表处理

			// 2.3 切割
			String[] fields = line.split("\\t");
			
			// 2.4 封装bean对象
			bean.setP_id(fields[0]);
			bean.setPname(fields[1]);
			bean.setFlag("pd");
			bean.setAmount(0);
			bean.setOrder_id("");
			
			k.set(fields[0]);
		}

		// 3 写出
		context.write(k, bean);
	}
}

3)编写TableReducer类

package com.jinghang.mapreduce.table;
import java.io.IOException;
import java.util.ArrayList;
import org.apache.commons.beanutils.BeanUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class TableReducer extends Reducer<Text, TableBean, TableBean, NullWritable> {

	@Override
	protected void reduce(Text key, Iterable<TableBean> values, Context context)	throws IOException, InterruptedException {

		// 1准备存储订单的集合
		ArrayList<TableBean> orderBeans = new ArrayList<>();
		
// 2 准备bean对象
		TableBean pdBean = new TableBean();

		for (TableBean bean : values) {

			if ("order".equals(bean.getFlag())) {// 订单表

				// 拷贝传递过来的每条订单数据到集合中
				TableBean orderBean = new TableBean();

				try {
					BeanUtils.copyProperties(orderBean, bean);
				} catch (Exception e) {
					e.printStackTrace();
				}

				orderBeans.add(orderBean);
			} else {// 产品表

				try {
					// 拷贝传递过来的产品表到内存中
					BeanUtils.copyProperties(pdBean, bean);
				} catch (Exception e) {
					e.printStackTrace();
				}
			}
		}

		// 3 表的拼接
		for(TableBean bean:orderBeans){

			bean.setPname (pdBean.getPname());
			
			// 4 数据写出去
			context.write(bean, NullWritable.get());
		}
	}
}

4)编写TableDriver类

package com.jinghang.mapreduce.table;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class TableDriver {

	public static void main(String[] args) throws Exception {
		
// 0 根据自己电脑路径重新配置
args = new String[]{"e:/input/inputtable","e:/output1"};

// 1 获取配置信息,或者job对象实例
		Configuration configuration = new Configuration();
		Job job = Job.getInstance(configuration);

		// 2 指定本程序的jar包所在的本地路径
		job.setJarByClass(TableDriver.class);

		// 3 指定本业务job要使用的Mapper/Reducer业务类
		job.setMapperClass(TableMapper.class);
		job.setReducerClass(TableReducer.class);

		// 4 指定Mapper输出数据的kv类型
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(TableBean.class);

		// 5 指定最终输出的数据的kv类型
		job.setOutputKeyClass(TableBean.class);
		job.setOutputValueClass(NullWritable.class);

		// 6 指定job的输入原始文件所在目录
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));

		// 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
		boolean result = job.waitForCompletion(true);
		System.exit(result ? 0 : 1);
	}
}

4.总结

Reduce Join缺点及解决方案:
缺点:这种方法种,合并的操作是在Reduce阶段完成,Reduce端的处理压力太大,Map节点的运行负载则很低,资源利用率不高,且在Reduce阶段极易产生数据倾斜。
解决方案:Map端实现数据合并;

以上是关于大数据之Hadoop(MapReduce):Join之Reduce Join应用的主要内容,如果未能解决你的问题,请参考以下文章

大数据之Hadoop(MapReduce): MapReduce概述

大数据之Hadoop(MapReduce):MapReduce核心思想

大数据之Hadoop(MapReduce):Hadoop企业优化

大数据技术之Hadoop(MapReduce)概述序列化

大数据技术之Hadoop(MapReduce)概述序列化

大数据之Hadoop(MapReduce):MapReduce编程规范