把Stream流学透了你也能写出简洁高效的代码,快来点击进来看看吧(建议收藏)

Posted 波波烤鸭

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了把Stream流学透了你也能写出简洁高效的代码,快来点击进来看看吧(建议收藏)相关的知识,希望对你有一定的参考价值。

  最近刚好有空给大家整理下JDK8的特性,这个在实际开发中的作用也是越来越重了,本文重点讲解下Stream API

Stream API

1.集合处理数据的弊端

  当我们在需要对集合中的元素进行操作的时候,除了必需的添加,删除,获取外,最典型的操作就是集合遍历,

package com.bobo.jdk.stream;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public class StreamTest01 {

    public static void main(String[] args) {
        // 定义一个List集合
        List<String> list = Arrays.asList("张三","张三丰","成龙","周星驰");
        // 1.获取所有 姓张的信息
        List<String> list1 = new ArrayList<>();
        for (String s : list) {
            if(s.startsWith("张")){
                list1.add(s);
            }
        }

        // 2.获取名称长度为3的用户
        List<String> list2 = new ArrayList<>();
        for (String s : list1) {
            if(s.length() == 3){
                list2.add(s);
            }
        }

        // 3. 输出所有的用户信息
        for (String s : list2) {
            System.out.println(s);
        }
    }
}

  上面的代码针对与我们不同的需求总是一次次的循环循环循环.这时我们希望有更加高效的处理方式,这时我们就可以通过JDK8中提供的Stream API来解决这个问题了。

  Stream更加优雅的解决方案:

package com.bobo.jdk.stream;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public class StreamTest02 {

    public static void main(String[] args) {
        // 定义一个List集合
        List<String> list = Arrays.asList("张三","张三丰","成龙","周星驰");
        // 1.获取所有 姓张的信息
        // 2.获取名称长度为3的用户
        // 3. 输出所有的用户信息
        list.stream()
                .filter(s->s.startsWith("张"))
                .filter(s->s.length() == 3)
                .forEach(s->{
                    System.out.println(s);
                });
        System.out.println("----------");
        list.stream()
                .filter(s->s.startsWith("张"))
                .filter(s->s.length() == 3)
                .forEach(System.out::println);
    }
}

  上面的SteamAPI代码的含义:获取流,过滤张,过滤长度,逐一打印。代码相比于上面的案例更加的简洁直观

2. Steam流式思想概述

  注意:Stream和IO流(InputStream/OutputStream)没有任何关系,请暂时忘记对传统IO流的固有印象!
Stream流式思想类似于工厂车间的“生产流水线”,Stream流不是一种数据结构,不保存数据,而是对数据进行加工
处理。Stream可以看作是流水线上的一个工序。在流水线上,通过多个工序让一个原材料加工成一个商品。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

  Stream API能让我们快速完成许多复杂的操作,如筛选、切片、映射、查找、去除重复,统计,匹配和归约。

3. Stream流的获取方式

3.1 根据Collection获取

  首先,java.util.Collection 接口中加入了default方法 stream,也就是说Collection接口下的所有的实现都可以通过steam方法来获取Stream流。

    public static void main(String[] args) {
        List<String> list = new ArrayList<>();
        list.stream();
        Set<String> set = new HashSet<>();
        set.stream();
        Vector vector = new Vector();
        vector.stream();
    }

  但是Map接口别没有实现Collection接口,那这时怎么办呢?这时我们可以根据Map获取对应的key value的集合。

    public static void main(String[] args) {
        Map<String,Object> map = new HashMap<>();
        Stream<String> stream = map.keySet().stream(); // key
        Stream<Object> stream1 = map.values().stream(); // value
        Stream<Map.Entry<String, Object>> stream2 = map.entrySet().stream(); // entry
    }

3.1 通过Stream的of方法

  在实际开发中我们不可避免的还是会操作到数组中的数据,由于数组对象不可能添加默认方法,所有Stream接口中提供了静态方法of

public class StreamTest05 {

    public static void main(String[] args) {
        Stream<String> a1 = Stream.of("a1", "a2", "a3");
        String[] arr1 = {"aa","bb","cc"};
        Stream<String> arr11 = Stream.of(arr1);
        Integer[] arr2 = {1,2,3,4};
        Stream<Integer> arr21 = Stream.of(arr2);
        arr21.forEach(System.out::println);
        // 注意:基本数据类型的数组是不行的
        int[] arr3 = {1,2,3,4};
        Stream.of(arr3).forEach(System.out::println);
    }
}

4.Stream常用方法介绍

  Stream常用方法
  Stream流模型的操作很丰富,这里介绍一些常用的API。这些方法可以被分成两种:

方法名方法作用返回值类型方法种类
count统计个数long终结
forEach逐一处理void终结
filter过滤Stream函数拼接
limit取用前几个Stream函数拼接
skip跳过前几个Stream函数拼接
map映射Stream函数拼接
concat组合Stream函数拼接

终结方法:返回值类型不再是 Stream 类型的方法,不再支持链式调用。本小节中,终结方法包括 count 和 forEach 方法。

非终结方法:返回值类型仍然是 Stream 类型的方法,支持链式调用。(除了终结方法外,其余方法均为非终结方法。)

Stream注意事项(重要)

  1. Stream只能操作一次
  2. Stream方法返回的是新的流
  3. Stream不调用终结方法,中间的操作不会执行

4.1 forEach

   forEach用来遍历流中的数据的

void forEach(Consumer<? super T> action);

  该方法接受一个Consumer接口,会将每一个流元素交给函数处理

    public static void main(String[] args) {
        Stream.of("a1", "a2", "a3").forEach(System.out::println);;
    }

4.2 count

  Stream流中的count方法用来统计其中的元素个数的

long count();

  该方法返回一个long值,代表元素的个数。

    public static void main(String[] args) {
        long count = Stream.of("a1", "a2", "a3").count();
        System.out.println(count);
    }

4.3 filter

  filter方法的作用是用来过滤数据的。返回符合条件的数据

在这里插入图片描述

  可以通过filter方法将一个流转换成另一个子集流

Stream<T> filter(Predicate<? super T> predicate);

  该接口接收一个Predicate函数式接口参数作为筛选条件

    public static void main(String[] args) {
         Stream.of("a1", "a2", "a3","bb","cc","aa","dd")
                 .filter((s)->s.contains("a"))
                 .forEach(System.out::println);

    }

输出:

a1
a2
a3
aa

4.4 limit

在这里插入图片描述

  limit方法可以对流进行截取处理,支取前n个数据,

Stream<T> limit(long maxSize);

  参数是一个long类型的数值,如果集合当前长度大于参数就进行截取,否则不操作:

    public static void main(String[] args) {
         Stream.of("a1", "a2", "a3","bb","cc","aa","dd")
                 .limit(3)
                 .forEach(System.out::println);

    }

输出:

a1
a2
a3

4.5 skip

在这里插入图片描述

  如果希望跳过前面几个元素,可以使用skip方法获取一个截取之后的新流:

   Stream<T> skip(long n);

操作:

    public static void main(String[] args) {
         Stream.of("a1", "a2", "a3","bb","cc","aa","dd")
                 .skip(3)
                 .forEach(System.out::println);

    }

输出:

bb
cc
aa
dd

4.6 map

  如果我们需要将流中的元素映射到另一个流中,可以使用map方法:

<R> Stream<R> map(Function<? super T, ? extends R> mapper);

在这里插入图片描述

  该接口需要一个Function函数式接口参数,可以将当前流中的T类型数据转换为另一种R类型的数据

    public static void main(String[] args) {
         Stream.of("1", "2", "3","4","5","6","7")
                 //.map(msg->Integer.parseInt(msg))
                 .map(Integer::parseInt)
                 .forEach(System.out::println);

    }

4.7 sorted

  如果需要将数据排序,可以使用sorted方法:

    Stream<T> sorted();

  在使用的时候可以根据自然规则排序,也可以通过比较强来指定对应的排序规则

    public static void main(String[] args) {
         Stream.of("1", "3", "2","4","0","9","7")
                 //.map(msg->Integer.parseInt(msg))
                 .map(Integer::parseInt)
                 //.sorted() // 根据数据的自然顺序排序
                 .sorted((o1,o2)->o2-o1) // 根据比较强指定排序规则
                 .forEach(System.out::println);

    }

4.8 distinct

  如果要去掉重复数据,可以使用distinct方法:

    Stream<T> distinct();

在这里插入图片描述
使用:

    public static void main(String[] args) {
         Stream.of("1", "3", "3","4","0","1","7")
                 //.map(msg->Integer.parseInt(msg))
                 .map(Integer::parseInt)
                 //.sorted() // 根据数据的自然顺序排序
                 .sorted((o1,o2)->o2-o1) // 根据比较强指定排序规则
                 .distinct() // 去掉重复的记录
                 .forEach(System.out::println);
        System.out.println("--------");
        Stream.of(
                new Person("张三",18)
                ,new Person("李四",22)
                ,new Person("张三",18)
        ).distinct()
                .forEach(System.out::println);

    }

  Stream流中的distinct方法对于基本数据类型是可以直接出重的,但是对于自定义类型,我们是需要重写hashCode和equals方法来移除重复元素。

4.9 match

  如果需要判断数据是否匹配指定的条件,可以使用match相关的方法

boolean anyMatch(Predicate<? super T> predicate); // 元素是否有任意一个满足条件
boolean allMatch(Predicate<? super T> predicate); // 元素是否都满足条件
boolean noneMatch(Predicate<? super T> predicate); // 元素是否都不满足条件

使用

    public static void main(String[] args) {
        boolean b = Stream.of("1", "3", "3", "4", "5", "1", "7")
                .map(Integer::parseInt)
                //.allMatch(s -> s > 0)
                //.anyMatch(s -> s >4)
                .noneMatch(s -> s > 4)
                ;
        System.out.println(b);
    }

  注意match是一个终结方法

4.10 find

  如果我们需要找到某些数据,可以使用find方法来实现

    Optional<T> findFirst();
    Optional<T> findAny();

在这里插入图片描述

使用:

    public static void main(String[] args) {

        Optional<String> first = Stream.of("1", "3", "3", "4", "5", 以上是关于把Stream流学透了你也能写出简洁高效的代码,快来点击进来看看吧(建议收藏)的主要内容,如果未能解决你的问题,请参考以下文章

9个前端代码规范秘籍 你也能写出诗一样的代码

cmd运行java文件不显示——Stream代码简洁之道的详细用法

一文讲透链表操作,看完你也能轻松写出正确的链表代码

掌握这9个单行代码技巧!你也能写出『高端』Python代码 ⛵

一文讲透链表操作,看完你也能轻松写出正确的链表代码

一文讲透链表操作,看完你也能轻松写出正确的链表代码