缓存和数据库的一致性的那些事

Posted 大树叶

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了缓存和数据库的一致性的那些事相关的知识,希望对你有一定的参考价值。

目录

问题场景:

更新缓存的设计模式

1.Cache Aside Pattern(旁路缓存)

2.Read/Write Through Pattern

2.1 Read Through

2.2 Write Through

3.Write Behind Caching Pattern

缓存架构设计

1.更新缓存 VS 淘汰缓存

2.先操作数据库 vs 先操作缓存

3. 缓存架构优化

3.1 一种方案是服务化

3.2 另一种方案是异步缓存更新

缓存和DB一致性的解决方案

先淘汰缓存,再写数据库

先写数据库,再更新缓存

    1.基于定时任务来实现

    2.基于消息队列来实现

   3 基于数据库的 binlog 日志

参考文章


问题场景:

主要有以下场景,会导致缓存和 DB 的一致性问题:

  1. 并发的场景下,导致读取老的 DB 数据,更新到缓存中。
  2. 缓存和 DB 的操作,不在一个事务中,可能只有一个操作成功,而另一个操作失败,导致不一致。

当然,有一点我们要注意,缓存和 DB 的一致性,我们指的更多的是最终一致性。我们使用缓存只要是提高读操作的性能,真正在写操作的业务逻辑,还是以数据库为准。例如说,我们可能缓存用户钱包的余额在缓存中,在前端查询钱包余额时,读取缓存,在使用钱包余额时,读取数据库。

更新缓存的设计模式

1.Cache Aside Pattern(旁路缓存)

这是最常用最常用的pattern了。其具体逻辑如下:

失效:应用程序先从cache取数据,没有得到,则从数据库中取数据,成功后,放到缓存中。

命中:应用程序从cache中取数据,取到后返回。

更新:先把数据存到数据库中,成功后,再让缓存失效。

一个是查询操作,一个是更新操作的并发,首先,没有了删除cache数据的操作了,而是先更新了数据库中的数据,此时,缓存依然有效,所以,并发的查询操作拿的是没有更新的数据,但是,更新操作马上让缓存的失效了,后续的查询操作再把数据从数据库中拉出来。而不会像文章开头的那个逻辑产生的问题,后续的查询操作一直都在取老的数据。

要么通过2PC或是Paxos协议保证一致性,要么就是拼命的降低并发时脏数据的概率,而Facebook使用了这个降低概率的玩法,因为2PC太慢,而Paxos太复杂。当然,最好还是为缓存设置上过期时间。

2.Read/Write Through Pattern

在上面的Cache Aside套路中,我们的应用代码需要维护两个数据存储,一个是缓存(Cache),一个是数据库(Repository)。所以,应用程序比较啰嗦。而Read/Write Through套路是把更新数据库(Repository)的操作由缓存自己代理了,所以,对于应用层来说,就简单很多了。可以理解为,应用认为后端就是一个单一的存储,而存储自己维护自己的Cache。

2.1 Read Through

Read Through 套路就是在查询操作中更新缓存,也就是说,当缓存失效的时候(过期或LRU换出),Cache Aside是由调用方负责把数据加载入缓存,而Read Through则用缓存服务自己来加载,从而对应用方是透明的。

2.2 Write Through

Write Through 套路和Read Through相仿,不过是在更新数据时发生。当有数据更新的时候,如果没有命中缓存,直接更新数据库,然后返回。如果命中了缓存,则更新缓存,然后再由Cache自己更新数据库(这是一个同步操作)

下图自来Wikipedia的Cache词条。其中的Memory你可以理解为就是我们例子里的数据库。

3.Write Behind Caching Pattern

Write Behind 又叫 Write Back。write back就是Linux文件系统的Page Cache的算法。

Write Back套路,一句说就是,在更新数据的时候,只更新缓存,不更新数据库,而我们的缓存会异步地批量更新数据库。

这个设计的好处就是让数据的I/O操作飞快无比(因为直接操作内存嘛 ),因为异步,write backg还可以合并对同一个数据的多次操作,所以性能的提高是相当可观的。

但是,其带来的问题是,数据不是强一致性的,而且可能会丢失(我们知道Unix/Linux非正常关机会导致数据丢失,就是因为这个事)。在软件设计上,我们基本上不可能做出一个没有缺陷的设计,就像算法设计中的时间换空间,空间换时间一个道理,有时候,强一致性和高性能,高可用和高性性是有冲突的。软件设计从来都是取舍Trade-Off。

另外,Write Back实现逻辑比较复杂,因为他需要track有哪数据是被更新了的,需要刷到持久层上。操作系统的write back会在仅当这个cache需要失效的时候,才会被真正持久起来,比如,内存不够了,或是进程退出了等情况,这又叫lazy write。

在wikipedia上有一张write back的流程图,基本逻辑如下:

参照:左耳朵耗子《缓存更新的套路

缓存架构设计

1.更新缓存 VS 淘汰缓存

更新缓存:数据不但写入数据库,还会写入缓存;优点:缓存不会增加一次miss,命中率高

淘汰缓存:数据只会写入数据库,不会写入缓存,只会把数据淘汰掉;优点:简单

这两者的选择主要取决于“更新缓存的复杂度”。

例如,上述场景,只是简单的把余额money设置成一个值,那么:

(1)淘汰缓存的操作为deleteCache(uid)

(2)更新缓存的操作为setCache(uid, money)

更新缓存的代价很小,此时我们应该更倾向于更新缓存,以保证更高的缓存命中率

如果余额是通过很复杂的数据计算得出来的,例如业务上除了账户表account,还有商品表product,折扣表discount

account(uid, money)

product(pid, type, price, pinfo)

discount(type, zhekou)

业务场景是:

用户买了一个商品product,这个商品的价格是price,这个商品从属于type类商品,type类商品在做促销活动要打折扣zhekou,购买了商品过后,这个余额的计算就复杂了,需要:

(1)先把商品的品类,价格取出来:SELECT type, price FROM product WHERE pid=XXX

(2)再把这个品类的折扣取出来:SELECT zhekou FROM discount WHERE type=XXX

(3)再把原有余额从缓存中查询出来money = getCache(uid)

(4)再把新的余额写入到缓存中去setCache(uid, money-price*zhekou)

更新缓存的代价很大,此时我们应该更倾向于淘汰缓存。

总之,淘汰缓存操作简单,并且带来的副作用只是增加了一次cache miss,建议作为通用的处理方式。

2.先操作数据库 vs 先操作缓存

当写操作发生时,假设淘汰缓存作为对缓存通用的处理方式,又面临两种抉择:

(1)先写数据库,再淘汰缓存

(2)先淘汰缓存,再写数据库

对于一个不能保证事务性的操作,一定涉及“哪个任务先做,哪个任务后做”的问题,解决这个问题的方向是:如果出现不一致,谁先做对业务的影响较小,就谁先执行。

由于写数据库与淘汰缓存不能保证原子性,谁先谁后同样要遵循上述原则。

假设先写数据库,再淘汰缓存:第一步写数据库操作成功,第二步淘汰缓存失败,则会出现DB中是新数据,Cache中是旧数据,数据不一致。

假设先淘汰缓存,再写数据库:第一步淘汰缓存成功,第二步写数据库失败,则只会引发一次Cache miss。

结论:数据和缓存的操作时序:先淘汰缓存,再写数据库。

3. 缓存架构优化


上述缓存架构有一个缺点:业务方需要同时关注缓存与DB,主要有两种优化方案.

3.1 一种方案是服务化

加入一个服务层,向上游提供帅气的数据访问接口,向上游屏蔽底层数据存储的细节,这样业务线不需要关注数据是来自于cache还是DB。

3.2 另一种方案是异步缓存更新

业务线所有的写操作都走数据库,所有的读操作都总缓存,由一个异步的工具来做数据库与缓存之间数据的同步,具体细节是:

(1)要有一个init cache的过程,将需要缓存的数据全量写入cache

(2)如果DB有写操作,异步更新程序读取binlog,更新cache

在(1)和(2)的合作下,cache中有全部的数据,这样:

(a)业务线读cache,一定能够hit(很短的时间内,可能有脏数据),无需关注数据库

(b)业务线写DB,cache中能得到异步更新,无需关注缓存

这样将大大简化业务线的调用逻辑,存在的缺点是,如果缓存的数据业务逻辑比较复杂,async-update异步更新的逻辑可能也会比较复杂。

结论:
(1)淘汰缓存是一种通用的缓存处理方式

(2)先淘汰缓存,再写数据库

(3)服务化是向业务方屏蔽底层数据库与缓存复杂性的一种通用方式

参照:沈剑《缓存架构设计细节二三事

缓存和DB一致性的解决方案

  • 先淘汰缓存,再写数据库

因为先淘汰缓存,所以数据的最终一致性是可以得到有效的保证的。因为先淘汰缓存,即使写数据库发生异常,也就是下次缓存读取时,多读取一次数据库。

但是,这种方案会存在缓存和 DB 的数据会不一致的情况,参照《缓存与数据库一致性优化》 所说。

我们需要解决缓存并行写,实现串行写。比较简单的方式,引入分布式锁。

在写请求时,先淘汰缓存之前,获取该分布式锁。

在读请求时,发现缓存不存在时,先获取分布式锁。

这样,缓存的并行写就成功的变成串行写落。写请求时,是否主动更新缓存,根据自己业务的需要,是否有,都没问题。

  • 先写数据库,再更新缓存

 按照“先写数据库,再更新缓存”,我们要保证 DB 和缓存的操作,能够在“同一个事务”中,从而实现最终一致性。有下面几种做法。

    1.基于定时任务来实现

首先,写入数据库。然后,在写入数据库所在的事务中,插入一条记录到任务表。该记录会存储需要更新的缓存 KEY 和 VALUE 。

【异步】最后,定时任务每秒扫描任务表,更新到缓存中,之后删除该记录。

    2.基于消息队列来实现

 首先,写入数据库,然后,发送带有缓存 KEY 和 VALUE 的事务消息。此时,需要有支持事务消息特性的消息队列,或者我们自己封装消息队列,支持事务消息。

【异步】最后,消费者消费该消息,更新到缓存中。

这两种方式,可以进一步优化,可以先尝试更新缓存,如果失败,则插入任务表,或者事务消息。

另外,极端情况下,如果并发写执行时,先更新成功 DB 的,结果后更新缓存:

理论来说,希望的更新缓存顺序是,线程 1 快于线程 2 ,但是实际线程1 晚于线程 2 ,导致数据不一致。

图中一直是基于定时任务或消息队列来实现异步更新缓存,如果网络抖动,导致【插入任务表,或者事务消息】的顺序不一致。

那么怎么解决呢?需要做如下三件事情:

1、在缓存值中,拼接上数据版本号或者时间戳。例如说:value = {value: 原值, version: xxx} 。

2、在任务表的记录,或者事务消息中,增加上数据版本号或者时间戳的字段。

3、在定时任务或消息队列执行更新缓存时,先读取缓存,对比版本号或时间戳,大于才进行更新。 当然,此处也会有并发问题,所以还是得引入分布式锁或 CAS 操作。

关于 Redis 分布式锁,可以看看 《精尽 Redis 面试题》 的 「如何使用 Redis 实现分布式锁?」 问题。

关于 Redis CAS 操作,可以看看 《精尽 Redis 面试题》 的 「什么是 Redis 事务?」 问题。

   3 基于数据库的 binlog 日志


 1、重客户端

写入缓存:

应用同时更新数据库和缓存

如果数据库更新成功,则开始更新缓存,否则如果数据库更新失败,则整个更新过程失败。

判断更新缓存是否成功,如果成功则返回

如果缓存没有更新成功,则将数据发到MQ中

应用监控MQ通道,收到消息后继续更新Redis。

问题点:如果更新Redis失败,同时在将数据发到MQ之前的时间,应用重启了,这时候MQ就没有需要更新的数据,如果Redis对所有数据没有设置过期时间,同时在读多写少的场景下,只能通过人工介入来更新缓存。

读缓存:

如何来解决这个问题?那么在写入Redis数据的时候,在数据中增加一个时间戳插入到Redis中。在从Redis中读取数据的时候,首先要判断一下当前时间有没有过期,如果没有则从缓存中读取,如果过期了则从数据库中读取最新数据覆盖当前Redis数据并更新时间戳。具体过程如下图所示:

2、客户端数据库与缓存解耦

上述方案对于应用的研发人员来讲比较重,需要研发人员同时考虑数据库和Redis是否成功来做不同方案,如何让研发人员只关注数据库层面,而不用关心缓存层呢?请看下图:

应用直接写数据到数据库中。

数据库更新binlog日志。

利用Canal中间件读取binlog日志。

Canal借助于限流组件按频率将数据发到MQ中。

应用监控MQ通道,将MQ的数据更新到Redis缓存中。

可以看到这种方案对研发人员来说比较轻量,不用关心缓存层面,而且这个方案虽然比较重,但是却容易形成统一的解决方案。

参照: 《技术专题讨论第五期:论系统架构设计中缓存的重要性

PS:下面这两种比较实用

“先淘汰缓存,再写数据库”的方案,并且无需引入分布式锁。

“先写数据库,再更新缓存”的方案,并且无需引入定时任务或者消息队列。

使用缓存过程中,经常会遇到缓存数据的不一致性和脏读现象。一般情况下,采取缓存双淘汰机制,在更新数据库的前淘汰缓存。此外,设定超时时间,例如三十分钟。

极端场景下,即使有脏数据进入缓存,这个脏数据也最存在一段时间后自动销毁。

另外,在 DB 主从架构下,方案会更加复杂。详细可以看看 《主从 DB 与 cache 一致性优化》 。
 

参考文章

1. 缓存更新的套路

2. 缓存与数据库一致性优化

以上是关于缓存和数据库的一致性的那些事的主要内容,如果未能解决你的问题,请参考以下文章

搞懂分布式技术13:缓存的那些事

缓存性能HTML5缓存的那些事

分布式事务那些事

缓存那些事-zz

提起线程,你不了解的那些事

前端缓存那些事