说说 Redis 主从哨兵集群 ~

Posted 小哈学Java

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了说说 Redis 主从哨兵集群 ~相关的知识,希望对你有一定的参考价值。

前言碎语

说起 Redis 应该没有人会陌生了吧,作为开发中最最最最最最最常用的 nosql,它的重要性不言而喻。

Redis有三种集群模式,第一个就是主从模式,第二种“哨兵”模式,第三种是 Cluster 集群模式。(准确的说应该是四种,单机模式,但是基本上只适用于自己玩玩,这里就不说了)

今天就和大家细细聊聊这三种模式。

主从复制

当其中一台服务器更新之后,服务器会自动的将这台更新的数据同步到另外一台服务器上。

通过持久化的功能,redis可以保证就算是服务宕机重启了,也只有少量的数据会丢失。但是在真实的使用场景当中,如果真的只有一台服务器,并且恰好宕机了,那么就会导致整个服务都不可用,因此redis提供了集群的方式来部署,可以避免这种问题。

在主从复制这种集群部署模式中,我们会将数据库分为两类,第一种称为主数据库(master),另一种称为从数据库(slave)。

数据库会负责我们整个系统中的读写操作,数据库会负责我们整个数据库中的操作。

其中在职场开发中的真实情况是,我们会让主数据库只负责写操作,让从数据库只负责读操作,就是为了读写分离减轻服务器的压力

但是我在实际开发中会遇到一种情况,该数据是个热点数据,我们知道,数据同步一定是会耗时的,那么当一个热点数据进入master中而slave没有来得及更新,再去读这个数据就会造成数据不一致现象,所以当时我的方案就是直接去读master节点,这个逻辑同样适用于mysql主从中出现的问题。

主从同步原理

  • 当一个从数据库启动时,它会向主数据库发送一个 SYNC命令
  • master收到后,在后台 保存快照,也就是我们说的RDB持久化,当然保存快照是需要消耗时间的,并且redis是单线程的(redis后面也支持了多线程,这里我们先不讲), 在保存快照期间redis收到的命令会缓存起来,快照完成后会将缓存的命令以及快照一起打包发给slave节点,从而保证主从数据库的一致性。
  • 从数据库接受到快照以及缓存的命令后会将这部分数据 写入到硬盘上的临时文件当中,写入完成后会用这份文件去替换掉RDB快照文件,当然,这个操作是不会阻塞的,可以继续接收命令执行,具体原因其实就是fork了一个子进程,用子进程去完成了这些功能。

因为不会阻塞,所以,这部分初始化完成后,当主数据库执行了改变数据的命令后,会异步的给slave,这也就是我们说的复制同步阶段,这个阶段会贯穿在整个主从同步的过程中,直到主从同步结束后,复制同步才会终止。

那么我上文提到的数据不一致的现象又是怎么回事呢?

是因为redis采用了乐观复制的策略:

容忍一定时间内主从数据库的数据是不一致的,但是会保证最终的结果一致

所以当主从复制发生时,正常情况下的命令都会在主数据库完成,然后直接反回给客户端,这样我们的性能就不会受到影响了,因为这里是主数据库先完成命令,那么就会产生其他问题。

举个例子,假如现在有1个master,6个slave,现在只有两个slave完成了同步,master写了新命令,在master准备将此命令传输给其他slave时,此刻其他的slave断电了,那么就会造成数据不一致的现象发生。

所以redis针对这种情况作了两个配置

min-slaves-to-write    2   (只有2个及以上的从数据库连接到了主数据库时,master库才是可写的)
min-slaves-max-lag   10  (10秒slave没有和master进行交互就认为丢失链接)

无硬盘复制

我们刚刚说了主从之间是通过RDB快照来交互的,虽然看来逻辑很简单,但是还是会存在一些问题:

  • 1.master 禁用了RDB快照时,发生了主从同步(复制初始化)操作,也会生成RDB快照,但是之后如果master发成了重启,就会用RDB快照去恢复数据,这份数据可能已经很久了,中间就会丢失数据
  • 2.在这种一主多从的结构中,master每次和slave同步数据都要进行一次快照,从而在硬盘中生成RDB文件,会 影响性能

为了解决这种问题,redis在后续的更新中也加入了无硬盘复制功能,也就是说直接通过网络发送给slave,避免了和硬盘交互,但是也是有io消耗的。

增量复制

为什么会有增量复制?

刚刚我们说了复制的原理,但是他的缺点是很明显的,就是在断开主从链接后,即使你只发生了一条数据变化,也需要将所有的数据通过SYNC命令用RDB将所有的数据同步给slave,但是其实并不需要同步所有的数据,只需要将改变的这小部分数据同步给slave就好了

所以为了解决这个问题,redis就有了增量复制。

这个原理其实是很简单的,学过kafka 的小伙伴应该知道,kafka消费是通过偏移量来计算的,redis的增量复制也是如此。

master会记下每个slave的id,在复制期间,如果有新消息,会将新消息(其实是新的命令,当然只包括让数据放生变动的命令,如 set  这种 )存放在一个固定大小的循环队列中,这个大小是可以配置的,当然这时候发送的就是PSYNC命令了,然后master会在复制完成后将这部分数据发送给slave,这样就在很大程度上保证了数据一致性。

哨兵模式

上文咱们说主从复制,在这种一主多从的结构中,我们让主从数据库做到了读写分离,也让从数据库能够完成数据备份的功能,可是也留下了一个比较严重的问题,当master挂了之后,只能由运维人员重新选择一个slave升级成master,然后继续提供服务

什么是哨兵?

顾名思义,哨兵其实就是放哨的,它主要会有完成两个功能

  • 1.监控整个主数据库和从数据库,观察它们是否正常运行

  • 2.当主数据库发生异常时,自动的将从数据库升级为主数据库,继续保证整个服务的稳定

哨兵其实是一个独立的进程,如下图

说说 Redis 主从哨兵集群 ~

当然,上图只是一个哨兵存在时的情况,但在现实中还会有两个,甚至更多哨兵存在的情况

说说 Redis 主从哨兵集群 ~

实现原理

当一个哨兵进程启动时,它会先通过配置文件,找我们的主数据库,当然,我们这里也只需要配置其监控的主数据库就好,之后哨兵会自动发现所有复制该主数据库的从数据库,当然一个哨兵是可以监控多个redis系统的,同时,多个哨兵也可以同时监控一个redis系统的,这里moon先给大家灌输下这个概念,大家理解下,详细的我会在后文提到。

哨兵进程启动后后会和master建立两条链接

  • 1.用来获取其他同样在监控着此redis系统的哨兵信息
  • 2.发送一个info命令来获取此redis系统master本身的信息

当和master完成链接建立后,该哨兵就会定时的做以下三件事情

  • 1.每10秒会向master和slave发送info命令
  • 2.每2秒会向master和slave发送自己的信息
  • 3.每1秒会向master,slave以及其他同样在监控着此redis系统的哨兵发送ping命令

以上三个操作可是说是哨兵的核心了,下面就着重介绍一下这三个命令

首先,info命令可以让哨兵获取到当前数据库的信息,比如运行id,复制信息等等,从而实现新节点的自动发现,从数据库的信息正是从info命令中获取的,获取从数据库信息后,就会和从数据库建立两条链接,和主数据库建立的链接是完全一样的,之后就会每10s向主从数据库发送info命令,当有新的从数据库加入时,就会从info命令中发现了,从而将这个新的slave加入自己的监控列表中。

当然如果有新的哨兵加入到了监控中,其他哨兵也是从这个info命令中获取的。

于此,就完成了对数据库以及其他哨兵的自动发现和监控,是不是很easy呢??

以上讲了自动发现数据库和其他的哨兵节点,之后哨兵就开始了它的工作,就是去监控这些数据库和节点有没有停止,哨兵就会每隔一段时间向这些节点发送PING命令,如果一段时间没有收到回复后,那么这个哨兵就会认为该节点已经挂了,我们将其称为主观下线

如果该节点是master,哨兵就会向其他节点询问,看其他节点时候也认为该master挂了,我们可以认为他们在投票,当票数达到了一定的次数,那么哨兵就认为该节点真的挂了,我们成为客观下线,然后哨兵之间就会选举,选出一个领头的哨兵对主从数据库发起故障的修复。

哨兵选举过程

  • 1.第一个发现该master挂了的哨兵,向每个哨兵发送命令,让对方选举自己成为领头哨兵
  • 2.其他哨兵如果没有选举过他人,就会将这一票投给第一个发现该master挂了的哨兵
  • 3.第一个发现该master挂了的哨兵如果发现由超过一半哨兵投给自己,并且其数量也超过了设定的quoram参数,那么该哨兵就成了领头哨兵
  • 4.如果多个哨兵同时参与这个选举,那么就会重复该过程,知道选出一个领头哨兵

选出领头哨兵后,就开始了故障修复,会从选出一个从数据库作为新的master

master选举过程

  • 1.从所有在线的从数据库中,选择优先级最高的从数据库
  • 2.如果有多个优先级高的从数据库,那么就会判断其偏移量,选择偏移量最小的从数据库,这里的偏移量就是增量复制的
  • 3.如果还是有相同条件的从数据库,就会选择运行id较小的从数据库升级为master

cluster集群模式

在redis3.0版本中支持了cluster集群部署的方式,这种集群部署的方式能自动将数据进行分片,每个master上放一部分数据,提供了内置的高可用服务,即使某个master挂了,服务还可以正常地提供,我们先来看张图:

说说 Redis 主从哨兵集群 ~

使用cluster集群模式,只需要将每个数据库节点的cluster-enabled配置选项打开即可,但是每个cluster集群至少要保证有3个主数据库才能正常运行。

cluster集群模式是怎么存放数据的?

一个cluster集群中总共有16384个节点,集群会将这16384个节点平均分配给每个节点,当然,我这里的节点指的是每个主节点,就如同下图:

说说 Redis 主从哨兵集群 ~


键是如何和16384个插槽做关联的?

redis将每个redis的键的键名有效部分使用CRC16算法计算出散列值,然后与16384取余数,这样的就可以使每个键能够尽量的均匀分布在16384个插槽中。

插槽是如何和节点做关联的?

  • 1.插槽之前 没有被分配过,现在想分配给指定节点
  • 2.插槽之前 被分配过,现在想移动指定节点

第一种情况可以通过cluster add slot s 命令来实现

第二种情况的原理相对麻烦一点,但是redis也提供的便捷的方式去操作,我们可以使用redis-trib.rb去实现

如何获取与插槽对应的节点?

当客户端向redis集群中的任意一个节点发送命令后,该节点都会判断当前键的信息是否存在于当前节点:

  • 如果存在,那么就会像单机的reids一样执行命令。

  • 如果不存在,就会返回一个move重定向请求,告诉客户端负责该数据的节点是哪一个,然后客户端会向该节点发送命令再次请求获取数据

新节点的加入

需要通过cluster meet命令来实现:

cluster meet ip port

故障恢复

判断故障的逻辑其实与哨兵模式有点类似,在集群中,每个节点都会定期的向其他节点发送ping命令,通过有没有收到回复来判断其他节点是否已经下线。

如果长时间没有回复,那么发起ping命令的节点就会认为目标节点疑似下线,也可以和哨兵一样称作主观下线,当然也需要集群中一定数量的节点都认为该节点下线才可以,我们来说说具体过程:

  • 1。当A节点发现目标节点 疑似下线,就会向集群中的其他节点散播消息,其他节点就会向目标节点发送命令,判断目标节点是否下线
  • 2.如果集群中 半数以上的节点都认为目标节点下线,就会对目标节点标记为下线,从而告诉其他节点,让目标节点在整个集群中都下线

如何提高redis的读写能力

这个问题也是我们之前抛出来的问题,我们放一张图大家就会很容易明白了:

说说 Redis 主从哨兵集群 ~

提高写能力只需要横向扩容master

提高读能力只需要横向扩容slave

结语

关于这三种部署的方式,基本上在我知道的公司都毫无疑问直接选择cluster模式,当然具体的选择还是要看公司的规模了,毕竟技术服务于业务,选择合适于当前业务的,就是最好的。

  
    
    
  

END


     
       
       
     

有热门推荐

以上是关于说说 Redis 主从哨兵集群 ~的主要内容,如果未能解决你的问题,请参考以下文章

Redis 主从复制-哨兵-集群 相关部署

玩转Redis的高可用(主从、哨兵、集群)

Redis 主从复制哨兵和集群区别

Redis 主从复制哨兵和集群区别

Redis 主从复制哨兵和集群区别

缓存加速------Redis主从复制,哨兵模式,集群