第三章 搜索与图论
Posted 辉小歌
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了第三章 搜索与图论相关的知识,希望对你有一定的参考价值。
以下总结摘自y总
目录
DFS和BFS
842. 排列数字
843. n-皇后问题
844. 走迷宫
845. 八数码
树与图的存储
树是一种特殊的图,与图的存储方式相同。
对于无向图中的边ab,存储两条有向边a->b, b->a。
因此我们可以只考虑有向图的存储。
(1) 邻接矩阵:g[a][ b ] 存储边a->b
(2) 邻接表:
有向图的邻接表存储就是对于每个点 v 对应一个头节点, 记录在h[v]
idx是图里边的编号,和建图的顺序有关,对于某一个点v, 它的所有邻边的编号不一定是连续的。
e 数组是edge的缩写,记录了某一条有向边的终点
ne数组是next的缩写,记录了邻接表里的同一个点的下一条邻边的idx
ne[idx]=h[a]; h[a]=idx; 就是把新建的边插入队头。(先把新建的边的next指向现在队头的next,然后更新队头的next)
然后再idx++, 给下一次建边使用
// 对于每个点k,开一个单链表,存储k所有可以走到的点。h[k]存储这个单链表的头结点
int h[N], e[N], ne[N], idx;
// 添加一条边a->b
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
// 初始化
idx = 0;
memset(h, -1, sizeof h);
树与图的遍历
时间复杂度 O(n+m), n 表示点数,m 表示边数
(1) 深度优先遍历 —— 模板题 AcWing 846. 树的重心
int dfs(int u)
{
st[u] = true; // st[u] 表示点u已经被遍历过
for (int i = h[u]; i != -1; i = ne[i])
{
int j = e[i];
if (!st[j]) dfs(j);
}
}
(2) 宽度优先遍历 —— 模板题 AcWing 847. 图中点的层次
queue<int> q;
st[1] = true; // 表示1号点已经被遍历过
q.push(1);
while (q.size())
{
int t = q.front();
q.pop();
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (!st[j])
{
st[j] = true; // 表示点j已经被遍历过
q.push(j);
}
}
}
拓扑排序
模板题 AcWing 848. 有向图的拓扑序列
时间复杂度 O(n+m), n 表示点数,m 表示边数
bool topsort()
{
int hh = 0, tt = -1;
// d[i] 存储点i的入度
for (int i = 1; i <= n; i ++ )
if (!d[i])
q[ ++ tt] = i;
while (hh <= tt)
{
int t = q[hh ++ ];
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (-- d[j] == 0)
q[ ++ tt] = j;
}
}
// 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。
return tt == n - 1;
}
朴素dijkstra算法
模板题 AcWing 849. Dijkstra求最短路 I
时间复杂是 O(n2+m), n表示点数,m 表示边数
int g[N][N]; // 存储每条边
int dist[N]; // 存储1号点到每个点的最短距离
bool st[N]; // 存储每个点的最短路是否已经确定
// 求1号点到n号点的最短路,如果不存在则返回-1
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
for (int i = 0; i < n - 1; i ++ )
{
int t = -1; // 在还未确定最短路的点中,寻找距离最小的点
for (int j = 1; j <= n; j ++ )
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
// 用t更新其他点的距离
for (int j = 1; j <= n; j ++ )
dist[j] = min(dist[j], dist[t] + g[t][j]);
st[t] = true;
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
堆优化版dijkstra
模板题 AcWing 850. Dijkstra求最短路 II
时间复杂度 O(mlogn), n 表示点数,m 表示边数
typedef pair<int, int> PII;
int n; // 点的数量
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N]; // 存储所有点到1号点的距离
bool st[N]; // 存储每个点的最短距离是否已确定
// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({0, 1}); // first存储距离,second存储节点编号
//因为要找距离源点最近的点,而pair默认先按第一关键字排再按第二关键字排
while (heap.size())
{
auto t = heap.top();
heap.pop();
int ver = t.second, distance = t.first;
if (st[ver]) continue;
st[ver] = true;
for (int i = h[ver]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > distance + w[i]) // w[i] 切记
{
dist[j] = distance + w[i];
heap.push({dist[j], j});
}
}
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
Bellman-Ford算法
模板题 AcWing 853. 有边数限制的最短路
时间复杂度 O(nm), n 表示点数,m 表示边数
上图摘自小呆呆大神 :https://www.acwing.com/solution/content/6320/
backup就相当于,我们bfs()四个方向枚举的时候,是用当前点枚举的,
不能走一个方向后,用新的点接着串联枚举。
const int N=510;
const int M=1e4+10;
int n, m; // n表示点数,m表示边数
int dist[N],backup[N]; // dist[x]存储1到x的最短路距离
struct Edge // 边,a表示出点,b表示入点,w表示边的权重
{
int a, b, w;
}edges[M];
// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
// 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,
//由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
for (int i = 0; i < n; i ++ )
{
memcpy(backup,dist,sizeof dist);
for (int j = 0; j < m; j ++ )
{
int a = edges[j].a, b = edges[j].b, w = edges[j].w;
dist[b]=min(dist[b],backup[a]+w);
}
}
if (dist[n] > 0x3f3f3f3f / 2) return -1;
return dist[n];
}
spfa 算法(队列优化的Bellman-Ford算法)
模板题 AcWing 851. spfa求最短路
时间复杂度 平均情况下 O(m),最坏情况下 O(nm), n 表示点数,m 表示边数
Bellman_ford算法会遍历所有的边,但是有很多的边遍历了其实没有什么意义,
我们只用遍历那些到源点距离变小的点所连接的边即可,
只有当一个点的前驱结点更新了,该节点才会得到更新;
因此考虑到这一点,我们将创建一个队列每一次加入距离被更新的结点。
上图摘自:
小呆呆:https://www.acwing.com/solution/content/6325/
orzorz: https://www.acwing.com/solution/content/9306/
int n; // 总点数
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N]; // 存储每个点到1号点的最短距离
bool st[N]; // 存储每个点是否在队列中
// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
queue<int> q;
q.push(1);
st[1] = true;//标记入队了
while (q.size())
{
auto t = q.front();
q.pop();
st[t] = false;//标记出队了
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
if (!st[j]) // 如果队列中已存在j,则不需要将j重复插入
{
q.push(j);
st[j] = true;
}
}
}
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
spfa判断图中是否存在负环
模板题 AcWing 852. spfa判断负环
时间复杂度是 O(nm), n 表示点数,m 表示边数
int n; // 总点数
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N], cnt[N]; // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N]; // 存储每个点是否在队列中
// 如果存在负环,则返回true,否则返回false。
bool spfa()
{
// 不需要初始化dist数组
// 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。
queue<int> q;
for (int i = 1; i <= n; i ++ )
{
q.push(i);
st[i] = true;
}
while (q.size())
{
auto t = q.front();
q.pop();
st[t] = false;
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
cnt[j] = cnt[t] + 1;
if (cnt[j] >= n) return true; // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
if (!st[j])
{
q.push(j);
st[j] = true;
}
}
}
}
return false;
}
floyd算法
模板题 AcWing 854. Floyd求最短路
时间复杂度是 O(n3), n 表示点数
摘自:小呆呆 https://www.acwing.com/solution/content/6337/
初始化:
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
if (i == j) d[i][j] = 0;
else d[i][j] = INF;
// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
for (int k = 1; k <= n; k ++ )
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
朴素版prim算法
模板题 AcWing 858. Prim算法求最小生成树
时间复杂度是 O(n2+m), n 表示点数,m 表示边数
int n; // n表示点数
int g[N][N]; // 邻接矩阵,存储所有边
int dist[N]; // 存储其他点到当前最小生成树的距离
bool st[N]; // 存储每个点是否已经在生成树中
// 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和
int prim()
{
memset(dist, 0x3f, sizeof dist);
int res = 0;
for (int i = 0; i < n; i ++ )
{
int t = -1;
for (int j = 1; j <= n; j ++ )
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
if (i && dist[t] == INF) return INF; //说明不连通
if (i) res += dist[t];以上是关于第三章 搜索与图论的主要内容,如果未能解决你的问题,请参考以下文章