Halcon学习笔记-分类器mlp的解读

Posted 殇堼

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Halcon学习笔记-分类器mlp的解读相关的知识,希望对你有一定的参考价值。

create_ocr_class_mlp (Operator)解释

Name

create_ocr_class_mlp — Create an OCR classifier using a multilayer perceptron.

Signature

create_ocr_class_mlp( : : WidthCharacter, HeightCharacter, Interpolation, Features, Characters, NumHidden, Preprocessing, NumComponents, RandSeed : OCRHandle)

Description

create_ocr_class_mlp creates an OCR classifier that uses a multilayer perceptron (MLP). The handle of the OCR classifier is returned in OCRHandle.

For a description on how an MLP works, see create_class_mlp. create_ocr_class_mlp creates an MLP with OutputFunction = ‘softmax’. The length of the feature vector of the MLP (NumInput in create_class_mlp) is determined from the features that are used for the OCR, which are passed in Features. The features are described below. The number of units in the hidden layer is determined by NumHidden. The number of output variables of the MLP (NumOutput in create_class_mlp) is determined from the names of the characters to be used in the OCR, which are passed in Characters. As described with create_class_mlp, the parameters Preprocessing and NumComponents can be used to specify a preprocessing of the data (i.e., the feature vectors). The OCR already approximately normalizes the features. Hence, Preprocessing can typically be set to ‘none’. The parameter RandSeed has the same meaning as in create_class_mlp. Furthermore, like for general MLP classifiers (see create_class_mlp and set_regularization_params_class_mlp), it may be desirable to regularize OCR classifiers. This can be achieved by calling set_regularization_params_ocr_class_mlp before training the OCR classifier. In addition, like for general MLP classifiers (see create_class_mlp and set_rejection_params_class_mlp), it might be desirable to equip the OCR classifiers with the capability to reject unknown characters. The rejection class is by convention an additional symbol chr(26) that must be provided in Characters. The parameters of the rejection class can be set by calling set_rejection_params_ocr_class_mlp before training the OCR classifier.

The features to be used for the classification are determined by Features. Features can contain a tuple of several feature names. Each of these feature names results in one or more features to be calculated for the classifier. Some of the feature names compute gray value features (e.g., ‘pixel_invar’). Because a classifier requires a constant number of features (input variables), a character to be classified is transformed to a standard size, which is determined by WidthCharacter and HeightCharacter. The interpolation to be used for the transformation is determined by Interpolation. It has the same meaning as in affine_trans_image. The interpolation should be chosen such that no aliasing effects occur in the transformation. For most applications, Interpolation = ‘constant’ should be used. It should be noted that the size of the transformed character is not chosen too large, because the generalization properties of the classifier may become bad for large sizes. In particular, large sizes will lead to the fact that small segmentation errors will have a large influence on the computed features if gray value features are used. This happens because segmentation errors will change the smallest enclosing rectangle of the regions, which leads to the fact that the character is zoomed differently than the characters in the training set. In most applications, sizes between 6x8 and 10x14 should be used.

The parameter Features can contain the following feature names for the classification of the characters.

‘default’
‘ratio’ and ‘pixel_invar’ are selected.

‘pixel’
Gray values of the character (WidthCharacter x HeightCharacter features).

‘pixel_invar’
Gray values of the character with maximum scaling of the gray values (WidthCharacter x HeightCharacter features).

‘pixel_binary’
Region of the character as a binary image zoomed to a size of WidthCharacter x HeightCharacter (WidthCharacter x HeightCharacter features).

‘gradient_8dir’
Gradients are computed on the character image. The gradient directions are discretized into 8 directions. The amplitude image is decomposed into 8 channels according to these discretized directions. 25 samples on a 5x5 grid are extracted from each channel. These samples are used as features (200 features).

‘projection_horizontal’
Horizontal projection of the gray values (see gray_projections, HeightCharacter features).

‘projection_horizontal_invar’
Maximally scaled horizontal projection of the gray values (HeightCharacter features).

‘projection_vertical’
Vertical projection of the gray values (see gray_projections, WidthCharacter features).

‘projection_vertical_invar’
Maximally scaled vertical projection of the gray values (WidthCharacter features).

‘ratio’
Aspect ratio of the character (1 feature).

‘anisometry’
Anisometry of the character (see eccentricity, 1 feature).

‘width’
Width of the character before scaling the character to the standard size (not scale-invariant, see smallest_rectangle1, 1 feature).

‘height’
Height of the character before scaling the character to the standard size (not scale-invariant, see smallest_rectangle1, 1 feature).

‘zoom_factor’
Difference in size between the character and the values of WidthCharacter and HeightCharacter (not scale-invariant, 1 feature).

‘foreground’
Fraction of pixels in the foreground (1 feature).

‘foreground_grid_9’
Fraction of pixels in the foreground in a 3x3 grid within the smallest enclosing rectangle of the character (9 features).

‘foreground_grid_16’
Fraction of pixels in the foreground in a 4x4 grid within the smallest enclosing rectangle of the character (16 features).

‘compactness’
Compactness of the character (see compactness, 1 feature).

‘convexity’
Convexity of the character (see convexity, 1 feature).

‘moments_region_2nd_invar’
Normalized 2nd moments of the character (see moments_region_2nd_invar, 3 features).

‘moments_region_2nd_rel_invar’
Normalized 2nd relative moments of the character (see moments_region_2nd_rel_invar, 2 features).

‘moments_region_3rd_invar’
Normalized 3rd moments of the character (see moments_region_3rd_invar, 4 features).

‘moments_central’
Normalized central moments of the character (see moments_region_central, 4 features).

‘moments_gray_plane’
Normalized gray value moments and the angle of the gray value plane (see moments_gray_plane, 4 features).

‘phi’
Sinus and cosinus of the orientation (angle) of the character (see elliptic_axis, 2 feature).

‘num_connect’
Number of connected components (see connect_and_holes, 1 feature).

‘num_holes’
Number of holes (see connect_and_holes, 1 feature).

‘cooc’
Values of the binary cooccurrence matrix (see gen_cooc_matrix, 8 features).

‘num_runs’
Number of runs in the region normalized by the height (1 feature).

‘chord_histo’
Frequency of the runs per row (HeightCharacter features).

After the classifier has been created, it is trained using trainf_ocr_class_mlp. After this, the classifier can be saved using write_ocr_class_mlp. Alternatively, the classifier can be used immediately after training to classify characters using do_ocr_single_class_mlp or do_ocr_multi_class_mlp.

HALCON provides a number of pretrained OCR classifiers (see Solution Guide I, chapter ‘OCR’, section ‘Pretrained OCR Fonts’). These pretrained OCR classifiers can be read directly with read_ocr_class_mlp and make it possible to read a wide variety of different fonts without the need to train an OCR classifier. Therefore, it is recommended to try if one of the pretrained OCR classifiers can be used successfully. If this is the case, it is not necessary to create and train an OCR classifier.

A comparison of the MLP and the support vector machine (SVM) (see create_ocr_class_svm) typically shows that SVMs are generally faster at training, especially for huge training sets, and achieve slightly better recognition rates than MLPs. The MLP is faster at classification and should therefore be prefered in time critical applications. Please note that this guideline assumes optimal tuning of the parameters.

Parallelization

Multithreading type: reentrant (runs in parallel with non-exclusive operators).
Multithreading scope: global (may be called from any thread).
Processed without parallelization.
This operator returns a handle. Note that the state of an instance of this handle type may be changed by specific operators even when it is used as an input parameter.

Parameters

WidthCharacter (input_control)

integer → (integer)
Width of the rectangle to which the gray values of the segmented character are zoomed.
Default value: 8
Suggested values: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20
Typical range of values: 4 ≤ WidthCharacter ≤ 20

HeightCharacter (input_control)

integer → (integer)
Height of the rectangle to which the gray values of the segmented character are zoomed.
Default value: 10
Suggested values: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20
Typical range of values: 4 ≤ HeightCharacter ≤ 20

Interpolation (input_control)

string → (string)
Interpolation mode for the zooming of the characters.
Default value: ‘constant’
List of values: ‘bilinear’, ‘constant’, ‘nearest_neighbor’, ‘weighted’

Features (input_control)

输入字符可以选用的特征
string(-array) → (string)
Features to be used for classification.
Default value: ‘default’
List of values: ‘anisometry’, ‘chord_histo’, ‘compactness’, ‘convexity’, ‘cooc’, ‘default’, ‘foreground’, ‘foreground_grid_16’, ‘foreground_grid_9’, ‘gradient_8dir’, ‘height’, ‘moments_central’, ‘moments_gray_plane’, ‘moments_region_2nd_invar’, ‘moments_region_2nd_rel_invar’, ‘moments_region_3rd_invar’, ‘num_connect’, ‘num_holes’, ‘num_runs’, ‘phi’, ‘pixel’, ‘pixel_binary’, ‘pixel_invar’, ‘projection_horizontal’, ‘projection_horizontal_invar’, ‘projection_vertical’, ‘projection_vertical_invar’, ‘ratio’, ‘width’, ‘zoom_factor’

Characters (input_control)

输入要被读入所有字符。实例中也就是字符名称
string-array → (string)
All characters of the character set to be read.
Default value: [‘0’,‘1’,‘2’,‘3’,‘4’,‘5’,‘6’,‘7’,‘8’,‘9’]

NumHidden (input_control)

隐私神经元的个数
integer → (integer)
Number of hidden units of the MLP.
Default value: 80
Suggested values: 1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150
Restriction: NumHidden >= 1

Preprocessing (input_control)

string → (string)
Type of preprocessing used to transform the feature vectors.
Default value: ‘none’
List of values: ‘canonical_variates’, ‘none’, ‘normalization’, ‘principal_components’

NumComponents (input_control)

integer → (integer)
Preprocessing parameter: Number of transformed features (ignored for Preprocessing = ‘none’ and Preprocessing = ‘normalization’).
Default value: 10
Suggested values: 1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100
Restriction: NumComponents >= 1

RandSeed (input_control)

integer → (integer)
Seed value of the random number generator that is used to initialize the MLP with random values.
Default value: 42

OCRHandle (output_control)

ocr_mlp → (integer)
Handle of the OCR classifier.

Example (HDevelop)

read_image (Image, ‘letters’)

  • Segment the image.
    binary_threshold(Image,&Region, ‘otsu’, ‘dark’, &UsedThreshold);
    dilation_circle (Region, RegionDilation, 3.5)
    connection (RegionDilation, ConnectedRegions)
    intersection (ConnectedRegions, Region, RegionIntersection)
    sort_region (RegionIntersection, Characters, ‘character’, ‘true’, ‘row’)
  • Generate the training file.
    count_obj (Characters, Number)
    Classes := []
    for J := 0 to 25 by 1
    Classes := [Classes,gen_tuple_const(20,chr(ord(‘a’)+J))]
    endfor
    Classes := [Classes,gen_tuple_const(20,’.’)]
    write_ocr_trainf (Characters, Image, Classes, ‘letters.trf’)
  • Generate and train the classifier.
    read_ocr_trainf_names (‘letters.trf’, CharacterNames, CharacterCount)
    create_ocr_class_mlp (8, 10, ‘constant’, ‘default’, CharacterNames, 20,
    ‘none’, 81, 42, OCRHandle)
    trainf_ocr_class_mlp (OCRHandle, ‘letters.trf’, 100, 0.01, 0.01, Error,
    ErrorLog)
  • Re-classify the characters in the image.
    do_ocr_multi_class_mlp (Characters, Image, OCRHandle, Class, Confidence)
    clear_ocr_class_mlp (OCRHandle)

Result

If the parameters are valid, the operator create_ocr_class_mlp returns the value 2 (H_MSG_TRUE). If necessary, an exception is raised.
Possible Successors
trainf_ocr_class_mlp, set_regularization_params_ocr_class_mlp, set_rejection_params_ocr_class_mlp
Alternatives
create_ocr_class_svm, create_ocr_class_box
See also
do_ocr_single_class_mlp, do_ocr_multi_class_mlp, clear_ocr_class_mlp, create_class_mlp, train_class_mlp, classify_class_mlp

Module

OCR/OCV

以上是关于Halcon学习笔记-分类器mlp的解读的主要内容,如果未能解决你的问题,请参考以下文章

基于Halcon的MLP(多层感知神经网络)分类器分类操作实例

halcon多层感知器MLP的使用

Keras MLP 分类器不学习

Halcon17 Linux 下载

Halcon18 windows 下载

Halcon17 windows 下载