1_深度学习知识点
Posted to.to
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了1_深度学习知识点相关的知识,希望对你有一定的参考价值。
以下转自:https://blog.csdn.net/qq_37692302/article/details/105234041
一、为什么深层神经网络难以训练?
1、梯度消失: 梯度消失是指通过隐藏层从后向前看,梯度会变得越来越小,说明前面层的学习会显著慢于后面层的学习,所以学习会卡主,除非梯度变大。
梯度消失的原因:学习率的大小,网络参数的初始化,激活函数的边缘效应等。在深层神经网络中,每一个神经元计算得到的梯度都会传递给前一层,较浅层的神经元接收到的梯度受到之前所有层梯度的影响。如果计算得到的梯度值非常小,随着层数增多,求出的梯度更新信息将会以指数形式衰减,就会发生梯度消失。
2、梯度爆炸: 在深度网络或循环神经网络(Recurrent Neural Network, RNN)等网络结构中,梯度可在网络更新的过程中不断累积,变成非常大的梯度,导致网络权重值的大幅更新,使得网络不稳定;在极端情况下,权重值甚至会溢出,变为Nan值,再也无法更新。
3、权重矩阵的退化导致模型的有效自由度减少。
参数空间中学习的退化速度减慢,导致减少了模型的有效维数,网络的可用自由度对学习中梯度范数的贡献不均衡,随着相乘矩阵的数量(即网络深度)的增加,矩阵的乘积变得越来越退化。在有硬饱和边界的非线性网络中(例如 ReLU 网络),随着深度增加,退化过程会变得越来越快。
二、深度学习和机器学习有什么不同?
传统的机器学习需要定义一些手工特征,从而有目的的去提取目标信息, 非常依赖任务的特异性以及设计特征的专家经验。而深度学习可以从大数据中先学习简单的特征,并从其逐渐学习到更为复杂抽象的深层特征,不依赖人工的特征工程。
三、为什么需要非线性激活函数
1、激活函数可以把当前特征空间通过一定的线性映射转换到另一个空间,学习和模拟其他复杂类型的数据,例如图像、视频、音频、语音等。
2、假若网络中全部是线性部件,那么线性的组合还是线性,与单独一个线性分类器无异。这样就做不到用非线性来逼近任意函数。
3、使用非线性激活函数 ,以便使网络更加强大,增加它的能力,使它可以学习复杂的事物,复杂的表单数据,以及表示输入输出之间非线性的复杂的任意函数映射。使用非线性激活函数,能够从输入输出之间生成非线性映射。
四、激活函数有哪些性质
1、非线性
2、可微性: 当优化方法是基于梯度的时候,就体现了该性质;
3、单调性: 当激活函数是单调的时候,单层网络能够保证是凸函数;
4、f(x)≈x: 当激活函数满足这个性质的时候,如果参数的初始化是随机的较小值,那么神经网络的训练将会很高效;如果不满足这个性质,那么就需要详细地去设置初始值;
5、输出值的范围: 当激活函数输出值是有限的时候,基于梯度的优化方法会更加稳定,因为特征的表示受有限权值的影响更显著;当激活函数的输出是无限的时候,模型的训练会更加高效,不过在这种情况小,一般需要更小的 Learning Rate。
五、如何选择激活函数
- 如果输出是 0、1 值(二分类问题),则输出层选择 sigmoid 函数,然后其它的所有单元都选择 Relu 函数。
- 如果在隐藏层上不确定使用哪个激活函数,那么通常会使用 Relu 激活函数。有时,也会使用 tanh 激活函数,但 Relu 的一个优点是:当是负值的时候,导数等于 0。
- sigmoid 激活函数:除了输出层是一个二分类问题基本不会用它。
- tanh 激活函数:tanh 是非常优秀的,几乎适合所有场合。
- 如果遇到了一些死的神经元,我们可以使用 Leaky ReLU 函数。
六、ReLu激活函数的优点
1、sigmoid 和 tanh 函数的导数在正负饱和区的梯度都会接近于 0,这会造成梯度弥散,而 Relu 和Leaky ReLu 函数大于 0 部分都为常数,不会产生梯度弥散现象。
2、在区间变动很大的情况下,ReLu 激活函数的导数或者激活函数的斜率都会远大于 0,在程序实现就是一个 if-else 语句,而 sigmoid 函数需要进行浮点四则运算,在实践中,使用 ReLu 激活函数神经网络通常会比使用 sigmoid 或者 tanh 激活函数学习的更快。
3、需注意,Relu 进入负半区的时候,梯度为 0,神经元此时不会训练,产生所谓的稀疏性,而 Leaky ReLu 不会产生这个问题。
稀疏激活性:从信号方面来看,即神经元同时只对输入信号的少部分选择性响应,大量信号被刻意的屏蔽了,这样可以提高学习的精度,更好更快地提取稀疏特征。当 x<0 时,ReLU 硬饱和,而当 x>0 时,则不存在饱和问题。ReLU 能够在 x>0 时保持梯度不衰减,从而缓解梯度消失问题。
七、交叉熵损失函数及其求导推导
定义:
将交叉熵看做是代价函数有两点原因。
第⼀,它是非负的, C > 0。可以看出:式子中的求和中的所有独⽴的项都是负数的,因为对数函数的定义域是 (0,1),并且求和前⾯有⼀个负号,所以结果是非负。
第⼆,如果对于所有的训练输入x,神经元实际的输出接近目标值,那么交叉熵将接近 0。实际输出和目标输出之间的差距越小,最终的交叉熵的值就越低了。(这里假设输出结果不是0,就是1,实际分类也是这样的)
交叉熵代价函数有⼀个比⼆次代价函数更好的特性就是它避免了学习速度下降的问题。
交叉熵函数关于权重的偏导数:
根据
的定义,求导后,我们可以得到
化简后可得:
可以看到圈中学习的速度受到,也就是输出中的误差的控制。更大的误差,更快的学习速度,特别地,这个代价函数还避免了像在二次代价函数中类似方程中导致的学习缓慢。当我们使⽤交叉熵的时候,被约掉了,所以我们不再需要关心它是不是变得很小。这种约除就是交叉熵带来的特效。
八、为什么Tanh收敛速度比Sigmoid快?
由上面两个公式可知tanh(x)梯度消失的问题比sigmoid轻,所以Tanh收敛速度比Sigmoid快。
九、为什么需要 Batch_Size?
Batch的选择,首先决定的是下降的方向。
如果数据集比较小,可采用全数据集的形式,好处是:
- 由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向。
- 由于不同权重的梯度值差别巨大,因此选取一个全局的学习率很困难。 Full Batch Learning 可以使用 Rprop 只基于梯度符号并且针对性单独更新各权值。
对于更大的数据集,假如采用全数据集的形式,坏处是:
- 随着数据集的海量增长和内存限制,一次性载入所有的数据进来变得越来越不可行。
- 以 Rprop 的方式迭代,会由于各个 Batch 之间的采样差异性,各次梯度修正值相互抵消,无法修正。这才有了后来 RMSProp 的妥协方案。
十、Batch_Size 值的选择
假如每次只训练一个样本,即 Batch_Size = 1。线性神经元在均方误差代价函数的错误面是一个抛物面,横截面是椭圆。对于多层神经元、非线性网络,在局部依然近似是抛物面。此时,每次修正方向以各自样本的梯度方向修正,横冲直撞各自为政,难以达到收敛。
既然 Batch_Size 为全数据集或者Batch_Size = 1都有各自缺点,可不可以选择一个适中的Batch_Size值呢?
此时,可采用批梯度下降法(Mini-batches Learning)。因为如果数据集足够充分,那么用一半(甚至少得多)的数据训练算出来的梯度与用全部数据训练出来的梯度是几乎一样的。
十一、在合理范围内,增大Batch_Size有何好处?
- 内存利用率提高了,大矩阵乘法的并行化效率提高。
- 跑完一次 epoch(全数据集)所需的迭代次数减少,对于相同数据量的处理速度进一步加快。
- 在一定范围内,一般来说 Batch_Size 越大,其确定的下降方向越准,引起训练震荡越小。
十二、盲目增大 Batch_Size 有何坏处?
- 内存利用率提高了,但是内存容量可能撑不住了。
- 跑完一次 epoch(全数据集)所需的迭代次数减少,要想达到相同的精度,其所花费的时间大大增加了,从而对参数的修正也就显得更加缓慢。
- Batch_Size 增大到一定程度,其确定的下降方向已经基本不再变化。
十三、为什么要归一化?
- 避免神经元饱和。就是当神经元的激活在接近 0 或者 1 时会饱和,在这些区域,梯度几乎为 0,这样,在反向传播过程中,局部梯度就会接近 0,这会有效地“杀死”梯度。
- 保证输出数据中数值小的不被吞食。
- 加快收敛。数据中常存在奇异样本数据,奇异样本数据存在所引起的网络训练时间增加,并可能引起网络无法收敛,为了避免出现这种情况及后面数据处理的方便,加快网络学习速度,可以对输入信号进行归一化,使得所有样本的输入信号其均值接近于 0 或与其均方差相比很小。
十四、为什么归一化能提高求解最优解速度
上图是代表数据是否归一化的最优解寻解过程(圆圈可以理解为等高线)。左图表示未经归一化操作的寻解过程,右图表示经过归一化后的寻解过程。
当使用梯度下降法寻求最优解时,很有可能走“之字型”路线(垂直等高线走),从而导致需要迭代很多次才能收敛;而右图对两个原始特征进行了归一化,其对应的等高线显得很圆,在梯度下降进行求解时能较快的收敛。
因此如果机器学习模型使用梯度下降法求最优解时,归一化往往非常有必要,否则很难收敛甚至不能收敛。
十五、归一化有哪些类型?
1、线性归一化
适用范围:比较适用在数值比较集中的情况。
缺点:如果 max 和 min 不稳定,很容易使得归一化结果不稳定,使得后续使用效果也不稳定。
2、标准差归一化
经过处理的数据符合标准正态分布,即均值为 0,标准差为 1
3、非线性归一化
适用范围:经常用在数据分化比较大的场景,有些数值很大,有些很小。通过一些数学函数,将原始值进行映射。该方法包括 log、指数,正切等。
十六、局部响应归一化作用
LRN 是一种提高深度学习准确度的技术方法。LRN 一般是在激活、池化函数后的一种方法。
其中,
a :表示卷积层(包括卷积操作和池化操作)后的输出结果,是一个四维数组[batch,height,width,channel]。
batch:批次数(每一批为一张图片)。
height:图片高度。
width:图片宽度。
channel:通道数。可以理解成一批图片中的某一个图片经过卷积操作后输出的神经元个数,或理解为处理后的图片深度。
表示在这个输出结构中的一个位置 [a,b,c,d] ,可以理解成在某一张图中的某一个通道下的某个高度和某个宽度位置的点,即第 a 张图的第d个通道下的高度为b宽度为c的点。
N :论文公式中的N表示通道数 (channel)。
a,n/2,k 分别表示函数中input,depth_radius,bias。参数都是超参数,一般设置
叠加的方向是沿着通道方向的,即每个点值的平方和是沿着 a 中的第 3 维 channel 方向的,也就是一个点同方向的前面 n/2 个通道(最小为第 0 个通道)和后 n/2 个通道(最大为第 d-1 个通道)的点的平方和(共 n+1 个点)。而函数的英文注解中也说明了把 input 当成是 d 个 3 维的矩阵,说白了就是把 input 的通道数当作 3 维矩阵的个数,叠加的方向也是在通道方向。
在 ALexNet 中,提出了 LRN 层,对局部神经元的活动创建竞争机制,使其中响应比较大对值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力。
十七、 批归一化(BN)算法的优点
批归一化(BN)就是在神经网络中间层也进行归一化处理。
优点:
- 减少了人为选择参数。在某些情况下可以取消 dropout 和 L2 正则项参数,或者采取更小的 L2 正则项约束参数;
- 减少了对学习率的要求。现在我们可以使用初始很大的学习率或者选择了较小的学习率,算法也能够快速训练收敛;
- 可以不再使用局部响应归一化。BN 本身就是归一化网络(局部响应归一化在 AlexNet 网络中存在)
- 破坏原来的数据分布,一定程度上缓解过拟合(防止每批训练中某一个样本经常被挑选到,文献说这个可以提高 1% 的精度)。
- 减少梯度消失,加快收敛速度,提高训练精度。
十八、BN算法流程
下面给出 BN 算法在训练时的过程
输入:上一层输出结果,学习参数
算法流程:
1、计算上一层输出数据的均值
m是此次训练样本batch的大小
2、计算上一层输出数据的标准差
3、归一化处理,得到
其中是为了避免分母为 0 而加进去的接近于0的很小值
4、重构,对经过上面归一化处理得到的数据进行重构,得到
其中,为可学习参数。
十九、Batch Normalization和Group Normalization的比较
Batch Normalization:可以让各种网络并行训练。但是维度进行归一化会带来一些问题-----批量统计估算不准确导致批量变小时,BN 的误差会迅速增加。在训练大型网络和将特征转移到计算机视觉任务中(包括检测、分割和视频),内存消耗限制了只能使用小批量的 BN。
Group Normalization:GN将通道分组,并且每组内计算归一化的均值和方差。GN的计算与批量大小无关,并且其准确度在各种批量大小下都很稳定。
二十、Weight Normalization和Batch Normalization比较
两者都属于参数重写的方式,只是采用的方式不同。
Weight Normalization 是对网络权值 W 进行 normalization;Batch Normalization 是对网络某一层输入数据进行 normalization。
Weight Normalization相比Batch Normalization有以下三点优势:
- Weight Normalization 通过重写深度学习网络的权重W的方式来加速深度学习网络参数收敛,没有引入 minbatch 的依赖,适用于 RNN(LSTM)网络(Batch Normalization 不能直接用于RNN,进行 normalization 操作,原因在于:1) RNN 处理的 Sequence 是变长的;2) RNN 是基于 time step 计算,如果直接使用 Batch Normalization 处理,需要保存每个 time step 下,mini btach 的均值和方差,效率低且占内存)。
- Batch Normalization 基于一个 mini batch 的数据计算均值和方差,而不是基于整个 Training set 来做,相当于进行梯度计算式引入噪声。因此,Batch Normalization 不适用于对噪声敏感的强化学习、生成模型(Generative model:GAN,VAE)使用。相反,Weight Normalization 对通过标量 g 和向量 v 对权重 W 进行重写,重写向量 v 是固定的,因此,基于 Weight Normalization 的 Normalization 可以看做比 Batch Normalization 引入更少的噪声。
- 不需要额外的存储空间来保存 mini batch 的均值和方差,同时实现 Weight Normalization 时,对深度学习网络进行正向信号传播和反向梯度计算带来的额外计算开销也很小。因此,要比采用 Batch Normalization 进行 normalization 操作时,速度快。 但是 Weight Normalization 不具备 Batch Normalization 把网络每一层的输出 Y 固定在一个变化范围的作用。因此,采用 Weight Normalization 进行 Normalization 时需要特别注意参数初始值的选择。
二十一、Batch Normalization在什么时候用比较合适?
在CNN中,BN应作用在非线性映射前。在神经网络训练时遇到收敛速度很慢,或梯度爆炸等无法训练的状况时可以尝试BN来解决。另外,在一般使用情况下也可以加入BN来加快训练速度,提高模型精度。
BN比较适用的场景是:每个mini-batch比较大,数据分布比较接近。在进行训练之前,要做好充分的shuffle,否则效果会差很多。另外,由于BN需要在运行过程中统计每个mini-batch的一阶统计量和二阶统计量,因此不适用于动态的网络结构和RNN网络。
二十二、学习率衰减常用参数有哪些
二十三、为什么要正则化
深度学习可能存在过拟合问题-----高方差,有两个解决方法,一个是正则化,另一个是准备更多的数据,这是非常可靠的方法,但你可能无法时时刻刻准备足够多的训练数据或者获取更多数据的成本很高,但正则化通常有助于避免过拟合或减少你的网络误差。
左图是高偏差,右图是高方差,中间是Just Right。
二十四、理解dropout正则化
不要依赖于任何一个特征,因为该单元的输入可能随时被清除,因此该单元通过这种方式传播下去,并为单元的四个输入增加一点权重,通过传播所有权重,dropout将产生收缩权重的平方范数的效果,和之前讲的L2正则化类似;实施dropout的结果实它会压缩权重,并完成一些预防过拟合的外层正则化;L2对不同权重的衰减是不同的,它取决于激活函数倍增的大小。
二十五、dropout率的选择
1、经过交叉验证,隐含节点dropout率等于0.5的时候效果最好,原因是0.5的时候dropout随机生成的网络结构最多。
2、dropout也可以被用作一种添加噪声的方法,直接对input进行操作、输入层设为更更接近 1 的数。使得输入变化不会太大(0.8)
3、对参数w的训练进行球形限制(max-normalization),对 dropout 的训练非常有用。
4、使用pretrain方法也可以帮助dropout训练参数,在使用dropout时,要将所有参数都乘以1/p
二十六、dropout有什么缺点
dropout一大缺点就是代价函数J不再被明确定义,每次迭代,都会随机移除一些节点,如果再三检查梯度下降的性能,实际上是很难进行复查的。定义明确的代价函数J每次迭代后都会下降,因为我们所优化的代价函数J实际上并没有明确定义,或者说在某种程度上很难计算,所以我们失去了调试工具来绘制这样的图片。我通常会关闭dropout函数,将keep-prob的值设为1,运行代码,确保J函数单调递减。然后打开dropout函数,希望在dropout过程中,代码并未引入bug。我觉得你也可以尝试其它方法,虽然我们并没有关于这些方法性能的数据统计,但你可以把它们与dropout方法一起使用。
二十七、如何理解 Internal Covariate Shift?
深度神经网络模型的训练为什么会很困难?其中一个重要的原因是,深度神经网络涉及到很多层的叠加,而每一层的参数更新会导致上层的输入数据分布发生变化,通过层层叠加,高层的输入分布变化会非常剧烈,这就使得高层需要不断去重新适应底层的参数更新。为了训好模型,我们需要非常谨慎地去设定学习率、初始化权重、以及尽可能细致的参数更新策略。
oogle 将这一现象总结为 Internal Covariate Shift,简称 ICS。 什么是 ICS 呢?
大家都知道在统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的”。如果不一致,那么就出现了新的机器学习问题,如 transfer learning / domain adaptation 等。而 covariate shift 就是分布不一致假设之下的一个分支问题,它是指源空间和目标空间的条件概率是一致的,但是其边缘概率不同。
大家细想便会发现,的确,对于神经网络的各层输出,由于它们经过了层内操作作用,其分布显然与各层对应的输入信号分布不同,而且差异会随着网络深度增大而增大,可是它们所能“指示”的样本标记(label)仍然是不变的,这便符合了covariate shift的定义。由于是对层间信号的分析,也即是“internal”的来由。
那么ICS会导致什么问题?
简而言之,每个神经元的输入数据不再是“独立同分布”。
其一,上层参数需要不断适应新的输入数据分布,降低学习速度。
其二,下层输入的变化可能趋向于变大或者变小,导致上层落入饱和区,使得学习过早停止。
其三,每层的更新都会影响到其它层,因此每层的参数更新策略需要尽可能的谨慎。
以下转自: https://blog.csdn.net/weixin_42073654/article/details/83063551
1.CNN的卷积核是单层还是多层的?
描述网络模型中某层的厚度,通常用名词通道channel数或者特征图feature map数。不过人们更习惯把作为数据输入的前层的厚度称之为通道数(比如RGB三色图层称为输入通道数为3),把作为卷积输出的后层的厚度称之为特征图数。
卷积核的厚度H, 一般等于前层厚度M(输入通道数或feature map数). 特殊情况M > H。
卷积核的个数N, 一般等于后层厚度(后层feature maps数,因为相等所以也用N表示)。
卷积核通常从属于后层,为后层提供了各种查看前层特征的视角,这个视角是自动形成的。
卷积核厚度等于1时为2D卷积,对应平面点相乘然后把结果加起来,相当于点积运算;
卷积核厚度大于1时为3D卷积,每片分别平面点求卷积,然后把每片结果加起来,作为3D卷积结果;
1x1卷积属于3D卷积的一个特例,有厚度无面积, 直接把每片单个点乘以权重再相加。
归纳之,卷积的意思就是把一个区域,不管是一维线段,二维方阵,还是三维长方块,全部按照卷积核的维度形状,对应逐点相乘再求和,浓缩成一个标量值也就是降到零维度,作为下一层的一个feature map的一个点的值! 可以比喻一群渔夫坐一个渔船撒网打鱼,鱼塘是多层水域,每层鱼儿不同。 船每次移位一个stride到一个地方,每个渔夫撒一网,得到收获,然后换一个距离stride再撒,如此重复直到遍历鱼塘。 A渔夫盯着鱼的品种,遍历鱼塘后该渔夫描绘了鱼塘的鱼品种分布; B渔夫盯着鱼的重量,遍历鱼塘后该渔夫描绘了鱼塘的鱼重量分布; 还有N-2个渔夫,各自兴趣各干各的; 最后得到N个特征图,描述了鱼塘的一切!
2.什么是卷积?
对图像(不同的数据窗口数据)和滤波矩阵(一组固定的权重:因为每个神经元的多个权重固定,所以又可以看做一个恒定的滤波器filter)做内积(逐个元素相乘再求和)的操作就是所谓的『卷积』操作,也是卷积神经网络的名字来源。
3.什么是CNN的池化
池化,简言之,即取区域平均或最大,如下图所示(图引自cs231n)
上图所展示的是取区域最大,即上图左边部分中 左上角2x2的矩阵中6最大,右上角2x2的矩阵中8最大,左下角2x2的矩阵中3最大,右下角2x2的矩阵中4最大,所以得到上图右边部分的结果:6 8 3 4。
4.简述下什么是生成对抗网络?
GAN之所以是对抗的,是因为GAN的内部是竞争关系,一方叫generator,它的主要工作是生成图片,并且尽量使得其看上去是来自于训练样本的。另一方是discriminator,其目标是判断输入图片是否属于真实训练样本。 更直白的讲,将generator想象成假币制造商,而discriminator是警察。generator目的是尽可能把假币造的跟真的一样,从而能够骗过discriminator,即生成样本并使它看上去好像来自于真实训练样本一样。
5.请介绍下tensorflow的计算图
Tensorflow是一个通过计算图的形式来表述计算的编程系统,计算图也叫数据流图,可以把计算图看做是一种有向图,Tensorflow中的每一个节点都是计算图上的一个Tensor, 也就是张量,而节点之间的边描述了计算之间的依赖关系(定义时)和数学操作(运算时)。如下两图表示:
a=x*y; b=a+z; c=tf.reduce_sum(b);
6.deeplearning 调参经验?
一、参数初始化 下面几种方式,随便选一个,结果基本都差不多。但是一定要做。否则可能会减慢收敛速度,影响收敛结果,甚至造成Nan等一系列问题。 下面的n_in为网络的输入大小,n_out为网络的输出大小,n为n_in或(n_in+n_out)*0.5
Xavier初始法论文:http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
He初始化论文:https://arxiv.org/abs/1502.01852 uniform均匀分布初始化:w = np.random.uniform(low=-scale, high=scale, size=[n_in,n_out])
Xavier初始法,适用于普通激活函数(tanh,sigmoid):scale = np.sqrt(3/n)
He初始化,适用于ReLU:scale = np.sqrt(6/n) normal高斯分布初始化:w = np.random.randn(n_in,n_out) * stdev # stdev为高斯分布的标准差,均值设为0
Xavier初始法,适用于普通激活函数 (tanh,sigmoid):stdev = np.sqrt(n)
He初始化,适用于ReLU:stdev = np.sqrt(2/n)
svd初始化:对RNN有比较好的效果。参考论文:https://arxiv.org/abs/1312.6120
二、数据预处理方式 zero-center ,这个挺常用的.X -= np.mean(X, axis = 0) # zero-centerX /= np.std(X, axis = 0) # normalize PCA whitening,这个用的比较少.
三、训练技巧 要做梯度归一化,即算出来的梯度除以minibatch size clip c(梯度裁剪): 限制最大梯度,其实是value = sqrt(w12+w22….),如果value超过了阈值,就算一个衰减系系数,让value的值等于阈值: 5,10,15
dropout对小数据防止过拟合有很好的效果,值一般设为0.5,小数据上dropout+sgd在我的大部分实验中,效果提升都非常明显.因此可能的话,建议一定要尝试一下。
dropout的位置比较有讲究, 对于RNN,建议放到输入->RNN与RNN->输出的位置.关于RNN如何用dropout,可以参考这篇论文:http://arxiv.org/abs/1409.2329 adam,adadelta等,在小数据上,我这里实验的效果不如sgd, sgd收敛速度会慢一些,但是最终收敛后的结果,一般都比较好。
如果使用sgd的话,可以选择从1.0或者0.1的学习率开始,隔一段时间,在验证集上检查一下,如果cost没有下降,就对学习率减半. 我看过很多论文都这么搞,我自己实验的结果也很好. 当然,也可以先用ada系列先跑,最后快收敛的时候,更换成sgd继续训练.同样也会有提升.据说adadelta一般在分类问题上效果比较好,adam在生成问题上效果比较好。
除了gate之类的地方,需要把输出限制成0-1之外,尽量不要用sigmoid,可以用tanh或者relu之类的激活函数.1. sigmoid函数在-4到4的区间里,才有较大的梯度。之外的区间,梯度接近0,很容易造成梯度消失问题。2. 输入0均值,sigmoid函数的输出不是0均值的。 rnn的dim和embdding size,一般从128上下开始调整. batch size,一般从128左右开始调整.batch size合适最重要,并不是越大越好. word2vec初始化,在小数据上,不仅可以有效提高收敛速度,也可以可以提高结果.
四、尽量对数据做shuffle LSTM 的forget gate的bias,用1.0或者更大的值做初始化,可以取得更好的结果,来自这篇论文:http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf, 我这里实验设成1.0,可以提高收敛速度.实际使用中,不同的任务,可能需要尝试不同的值. Batch Normalization据说可以提升效果,不过我没有尝试过,建议作为最后提升模型的手段,参考论文:Accelerating Deep Network Training by Reducing Internal Covariate Shift
如果你的模型包含全连接层(MLP),并且输入和输出大小一样,可以考虑将MLP替换成Highway Network,我尝试对结果有一点提升,建议作为最后提升模型的手段,原理很简单,就是给输出加了一个gate来控制信息的流动,详细介绍请参考论文: http://arxiv.org/abs/1505.00387 一轮加正则,一轮不加正则,反复进行。
五、Ensemble Ensemble是论文刷结果的终极核武器,深度学习中一般有以下几种方式 同样的参数,不同的初始化方式 不同的参数,通过cross-validation,选取最好的几组 同样的参数,模型训练的不同阶段,即不同迭代次数的模型。 不同的模型,进行线性融合. 例如RNN和传统模型.
7.CNN为什么可以应用在CV、NLP、SPEECH乃至ALPHA GO中?
以上几个不相关问题的相关性在于,都存在局部与整体的关系,由低层次的特征经过组合,组成高层次的特征,并且得到不同特征之间的空间相关性。如下图:低层次的直线/曲线等特征,组合成为不同的形状,最后得到汽车的表示。
CNN抓住此共性的手段主要有四个:局部连接/权值共享/池化操作/多层次结构。 局部连接使网络可以提取数据的局部特征;权值共享大大降低了网络的训练难度,一个Filter只提取一个特征,在整个图片(或者语音/文本) 中进行卷积;池化操作与多层次结构一起,实现了数据的降维,将低层次的局部特征组合成为较高层次的特征,从而对整个图片进行表示。如下图:
上图中,如果每一个点的处理使用相同的Filter,则为全卷积,如果使用不同的Filter,则为Local-Conv。
8.LSTM为什么比RNN好?
因为LSTM有进有出且当前的cell informaton是通过input gate控制之后叠加的,RNN是叠乘,因此LSTM可以防止梯度消失或者爆炸。
9.Sigmiod、Relu、Tanh三个激活函数的缺点和不足,有没有更好的激活函数?
sigmoid、Tanh、ReLU的缺点在121问题中已有说明,为了解决ReLU的dead cell的情况,发明了Leaky Relu, 即在输入小于0时不让输出为0,而是乘以一个较小的系数,从而保证有导数存在。同样的目的,还有一个ELU,函数示意图如下。
还有一个激活函数是Maxout,即使用两套w,b参数,输出较大值。本质上Maxout可以看做Relu的泛化版本,因为如果一套w,b全都是0的话,那么就是普通的ReLU。Maxout可以克服Relu的缺点,但是参数数目翻倍。
10.为什么引入非线性激活函数?
第一,对于神经网络来说,网络的每一层相当于f(wx+b)=f(w’x),对于线性函数,其实相当于f(x)=x,那么在线性激活函数下,每一层相当于用一个矩阵去乘以x,那么多层就是反复的用矩阵去乘以输入。根据矩阵的乘法法则,多个矩阵相乘得到一个大矩阵。所以线性激励函数下,多层网络与一层网络相当。比如,两层的网络f(W1*f(W2x))=W1W2x=Wx。 第二,非线性变换是深度学习有效的原因之一。原因在于非线性相当于对空间进行变换,变换完成后相当于对问题空间进行简化,原来线性不可解的问题现在变得可以解了。 下图可以很形象的解释这个问题,左图用一根线是无法划分的。经过一系列变换后,就变成线性可解的问题了。 如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机(Perceptron)了。 正因为上面的原因,我们决定引入非线性函数作为激励函数,这样深层神经网络就有意义了(不再是输入的线性组合,可以逼近任意函数)。最早的想法是sigmoid函数或者tanh函数,输出有界,很容易充当下一层输入(以及一些人的生物解释)。
11.relu为何好过sigmoid和tanh?
先看sigmoid、tanh和RelU的函数图:
第一,采用sigmoid等函数,算激活函数时(指数运算),计算量大,反向传播求误差梯度时,求导涉及除法和指数运算,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多。
第二,对于深层网络,sigmoid函数反向传播时,很容易就会出现梯度消失的情况(在sigmoid接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信息丢失),这种现象称为饱和,从而无法完成深层网络的训练。而ReLU就不会有饱和倾向,不会有特别小的梯度出现。
第三,Relu会使一部分神经元的输出为0,这样就造成了网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生(以及一些人的生物解释balabala)。当然现在也有一些对relu的改进,比如prelu,random relu等,在不同的数据集上会有一些训练速度上或者准确率上的改进。
12.为什么LSTM中既存在tanh和sigmoid,而不同意采用一样的。
sigmoid 用在了各种gate上,产生0~1之间的值,这个一般只有sigmoid最直接了。 tanh 用在了状态和输出上,是对数据的处理,这个用其他激活函数或许也可以。
13.如何解决RNN梯度消失和弥散的情况?
为了解决梯度爆炸问题,Thomas Mikolov首先提出了一个简单的启发性的解决方案,就是当梯度大于一定阈值的的时候,将它截断为一个较小的数。具体如算法1所述: 算法:当梯度爆炸时截断梯度
(伪代码)
下图可视化了梯度截断的效果。它展示了一个小的rnn(其中W为权值矩阵,b为bias项)的决策面。这个模型是一个一小段时间的rnn单元组成;实心箭头表明每步梯度下降的训练过程。当梯度下降过程中,模型的目标函数取得了较高的误差时,梯度将被送到远离决策面的位置。截断模型产生了一个虚线,它将误差梯度拉回到离原始梯度接近的位置。
梯度爆炸,梯度截断可视化 为了解决梯度弥散的问题,我们介绍了两种方法。第一种方法是将随机初始化改为一个有关联的矩阵初始化。第二种方法是使用ReLU(Rectified Linear Units)代替sigmoid函数。ReLU的导数不是0就是1.因此,神经元的梯度将始终为1,而不会当梯度传播了一定时间之后变小。
14.什么样的资料集不适合深度学习?
1、数据集太小,数据样本不足时,深度学习相对其它机器学习算法,没有明显优势。
2、数据集没有局部相关特性,目前深度学习表现比较好的领域主要是图像/语音/自然语言处理等领域,这些领域的一个共性是局部相关性。图像中像素组成物体,语音信号中音位组合成单词,文本数据中单词组合成句子,这些特征元素的组合一旦被打乱,表示的含义同时也被改变。对于没有这样的局部相关性的数据集,不适于使用深度学习算法进行处理。举个例子:预测一个人的健康状况,相关的参数会有年龄、职业、收入、家庭状况等各种元素,将这些元素打乱,并不会影响相关的结果。
15.如何解决梯度消失和梯度爆炸?
(1)梯度消失: 根据链式法则,如果每一层神经元对上一层的输出的偏导乘上权重结果都小于1的话,那么即使这个结果是0.99,在经过足够多层传播之后,误差对输入层的偏导会趋于0 可以采用ReLU激活函数有效的解决梯度消失的情况,也可以用Batch Normalization解决这个问题。关于深度学习中 Batch Normalization为什么效果好?参见:https://www.zhihu.com/question/38102762
(2)梯度膨胀 :根据链式法则,如果每一层神经元对上一层的输出的偏导乘上权重结果都大于1的话,在经过足够多层传播之后,误差对输入层的偏导会趋于无穷大 可以通过RELU激活函数来解决,或用Batch Normalization解决这个问题。
16.CNN常用的几个简单模型
17.梯度爆炸会引发什么?
在深度多层感知机网络中,梯度爆炸会引起网络不稳定,最好的结果是无法从训练数据中学习,而最坏的结果是出现无法再更新的 NaN 权重值。 梯度爆炸导致学习过程不稳定。—《深度学习》,2016. 在循环神经网络中,梯度爆炸会导致网络不稳定,无法利用训练数据学习,最好的结果是网络无法学习长的输入序列数据。
有很多方法可以解决梯度爆炸问题,本节列举了一些最佳实验方法。
-
重新设计网络模型 在深度神经网络中,梯度爆炸可以通过重新设计层数更少的网络来解决。 使用更小的批尺寸对网络训练也有好处。 在循环神经网络中,训练过程中在更少的先前时间步上进行更新(沿时间的截断反向传播,truncated Backpropagation through time)可以缓解梯度爆炸问题。
-
使用 ReLU 激活函数 在深度多层感知机神经网络中,梯度爆炸的发生可能是因为激活函数,如之前很流行的 Sigmoid 和 Tanh 函数。 使用 ReLU 激活函数可以减少梯度爆炸。采用 ReLU 激活函数是最适合隐藏层的新实践。
-
使用长短期记忆网络 在循环神经网络中,梯度爆炸的发生可能是因为某种网络的训练本身就存在不稳定性,如随时间的反向传播本质上将循环网络转换成深度多层感知机神经网络。 使用长短期记忆(LSTM)单元和相关的门类型神经元结构可以减少梯度爆炸问题。 采用 LSTM 单元是适合循环神经网络的序列预测的最新最好实践。
-
使用梯度截断(Gradient Clipping) 在非常深且批尺寸较大的多层感知机网络和输入序列较长的 LSTM 中,仍然有可能出现梯度爆炸。如果梯度爆炸仍然出现,你可以在训练过程中检查和限制梯度的大小。这就是梯度截断。 处理梯度爆炸有一个简单有效的解决方案:如果梯度超过阈值,就截断它们。 ——《Neural Network Methods in Natural Language Processing》,2017. 具体来说,检查误差梯度的值是否超过阈值,如果超过,则截断梯度,将梯度设置为阈值。 梯度截断可以一定程度上缓解梯度爆炸问题(梯度截断,即在执行梯度下降步骤之前将梯度设置为阈值)。 ——《深度学习》,2016. 在 Keras 深度学习库中,你可以在训练之前设置优化器上的 clipnorm 或 clipvalue 参数,来使用梯度截断。 默认值为 clipnorm=1.0 、clipvalue=0.5。详见:https://keras.io/optimizers/。
-
使用权重正则化(Weight Regularization) 如果梯度爆炸仍然存在,可以尝试另一种方法,即检查网络权重的大小,并惩罚产生较大权重值的损失函数。该过程被称为权重正则化,通常使用的是 L1 惩罚项(权重绝对值)或 L2 惩罚项(权重平方)。 对循环权重使用 L1 或 L2 惩罚项有助于缓解梯度爆炸。 ——On the difficulty of training recurrent neural networks,2013. 在 Keras 深度学习库中,你可以通过在层上设置 kernel_regularizer 参数和使用 L1 或 L2 正则化项进行权重正则化。
18.什么是RNN
RNNs的目的使用来处理序列数据。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。 RNNs之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。 理论上,RNNs能够对任何长度的序列数据进行处理。但是在实践中,为了降低复杂性往往假设当前的状态只与前面的几个状态相关,下图便是一个典型的RNNs:
RNNs包含输入单元(Input units),输入集标记为{x0,x1,…,xt,xt+1,…},而输出单元(Output units)的输出集则被标记为{y0,y1,…,yt,yt+1.,…}。RNNs还包含隐藏单元(Hidden units),我们将其输出集标记为{s0,s1,…,st,st+1,…},这些隐藏单元完成了最为主要的工作。你会发现,在图中:有一条单向流动的信息流是从输入单元到达隐藏单元的,与此同时另一条单向流动的信息流从隐藏单元到达输出单元。在某些情况下,RNNs会打破后者的限制,引导信息从输出单元返回隐藏单元,这些被称为“Back Projections”,并且隐藏层的输入还包括上一隐藏层的状态,即隐藏层内的节点可以自连也可以互连。
上图将循环神经网络进行展开成一个全神经网络。例如,对一个包含5个单词的语句,那么展开的网络便是一个五层的神经网络,每一层代表一个单词。对于该网络的计算过程如下: 1. xt表示第t,t=1,2,3…步(step)的输入。比如,x1为第二个词的one-hot向量(根据上图,x0为第一个词); 2. st为隐藏层的第t步的状态,它是网络的记忆单元。 st根据当前输入层的输出与上一步隐藏层的状态进行计算。st=f(Uxt+Wst−1),其中f一般是非线性的激活函数,如tanh或ReLU,在计算s0时,即第一个单词的隐藏层状态,需要用到s−1,但是其并不存在,在实现中一般置为0向量; 3. ot是第t步的输出,如下个单词的向量表示,ot=softmax(Vst).
19.什么是LSTM网络?
Long Short Term 网络—— 一般就叫做 LSTM ——是一种 RNN 特殊的类型,可以学习长期依赖信息。如@寒小阳所说:LSTM和基线RNN并没有特别大的结构不同,但是它们用了不同的函数来计算隐状态。LSTM的“记忆”我们叫做细胞/cells,你可以直接把它们想做黑盒,这个黑盒的输入为前状态ht−1和当前输入xt。这些“细胞”会决定哪些之前的信息和状态需要保留/记住,而哪些要被抹去。实际的应用中发现,这种方式可以有效地保存很长时间之前的关联信息。 LSTM 由Hochreiter & Schmidhuber (1997)提出,并在近期被Alex Graves进行了改良和推广。在很多问题,LSTM 都取得相当巨大的成功,并得到了广泛的使用。 LSTM 通过刻意的设计来避免长期依赖问题。记住长期的信息在实践中是 LSTM 的默认行为,而非需要付出很大代价才能获得的能力! 所有 RNN 都具有一种重复神经网络模块的链式的形式。在标准的 RNN 中,这个重复的模块只有一个非常简单的结构,例如一个 tanh 层。
标准 RNN 中的重复模块包含单一的层 LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于 单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。
LSTM 中的重复模块包含四个交互的层 不必担心这里的细节。我们会一步一步地剖析 LSTM 解析图。现在,我们先来熟悉一下图中使用的各种元素的图标。
LSTM 中的图标 在上面的图例中,每一条黑线传输着一整个向量,从一个节点的输出到其他节点的输入。粉色的圈代表 pointwise 的操作,诸如向量的和,而黄色的矩阵就是学习到的神经网络层。合在一起的线表示向量的连接,分开的线表示内容被复制,然后分发到不同的位置。 四、LSTM 的核心思想 LSTM 的关键就是细胞状态,水平线在图上方贯穿运行。 细胞状态类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。
LSTM 有通过精心设计的称作为“门”的结构来去除或者增加信息到细胞状态的能力。门是一种让信息选择式通过的方法。他们包含一个 sigmoid 神经网络层和一个 pointwise 乘法操作。
Sigmoid 层输出 0 到 1 之间的数值,描述每个部分有多少量可以通过。0 代表“不许任何量通过”,1 就指“允许任意量通过”! LSTM 拥有三个门,来保护和控制细胞状态。 在我们 LSTM 中的第一步是决定我们会从细胞状态中丢弃什么信息。这个决定通过一个称为忘记门层完成。该门会读取 h_{t-1} 和 x_t,输出一个在 0 到 1 之间的数值给每个在细胞状态 C_{t-1} 中的数字。1 表示“完全保留”,0 表示“完全舍弃”。 让我们回到语言模型的例子中来基于已经看到的预测下一个词。在这个问题中,细胞状态可能包含当前主语的性别,因此正确的代词可以被选择出来。当我们看到新的主语,我们希望忘记旧的主语。
决定丢弃信息 下一步是确定什么样的新信息被存放在细胞状态中。这里包含两个部分。第一,sigmoid 层称 “输入门层” 决定什么值我们将要更新。然后,一个 tanh 层创建一个新的候选值向量,\\tilde{C}t,会被加入到状态中。下一步,我们会讲这两个信息来产生对状态的更新。 在我们语言模型的例子中,我们希望增加新的主语的性别到细胞状态中,来替代旧的需要忘记的主语。
确定更新的信息 现在是更新旧细胞状态的时间了,C{t-1} 更新为 C_t。前面的步骤已经决定了将会做什么,我们现在就是实际去完成。 我们把旧状态与 f_t 相乘,丢弃掉我们确定需要丢弃的信息。接着加上 i_t * \\tilde{C}_t。这就是新的候选值,根据我们决定更新每个状态的程度进行变化。 在语言模型的例子中,这就是我们实际根据前面确定的目标,丢弃旧代词的性别信息并添加新的信息的地方。
更新细胞状态 最终,我们需要确定输出什么值。这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。首先,我们运行一个 sigmoid 层来确定细胞状态的哪个部分将输出出去。接着,我们把细胞状态通过 tanh 进行处理(得到一个在 -1 到 1 之间的值)并将它和 sigmoid 门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。 在语言模型的例子中,因为他就看到了一个 代词,可能需要输出与一个 动词 相关的信息。例如,可能输出是否代词是单数还是负数,这样如果是动词的话,我们也知道动词需要进行的词形变化。
输出信息
20.详细说说CNN工作原理
1 人工神经网络
1.1 神经元 神经网络由大量的神经元相互连接而成。每个神经元接受线性组合的输入后,最开始只是简单的线性加权,后来给每个神经元加上了非线性的激活函数,从而进行非线性变换后输出。每两个神经元之间的连接代表加权值,称之为权重(weight)。不同的权重和激活函数,则会导致神经网络不同的输出。 举个手写识别的例子,给定一个未知数字,让神经网络识别是什么数字。此时的神经网络的输入由一组被输入图像的像素所激活的输入神经元所定义。在通过非线性激活函数进行非线性变换后,神经元被激活然后被传递到其他神经元。重复这一过程,直到最后一个输出神经元被激活。从而识别当前数字是什么字。 神经网络的每个神经元如下
基本wx + b的形式,其中 x1、x2表示输
以上是关于1_深度学习知识点的主要内容,如果未能解决你的问题,请参考以下文章