networkx之图遍历和图绘制

Posted 白鳯

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了networkx之图遍历和图绘制相关的知识,希望对你有一定的参考价值。

networkx之图遍历和图绘制

图数据读取后默认标签(labels)为索引,如何使用编号id?

例如在读取football数据时,其labels都是节点的英文名称,这样在处理图数据时不是很方便,往往报错,我们通常习惯处理节点的编号从1开始,可以建立label-id的反向索引,如果处理图数据时只需要编号id,可以将labels属性设置为id,如果之后还需要查询,可返回反向索引字典

处理函数如下:

def swap_id_label(G):
    """
    建立id和label的反向索引
    return: new_graph
    :rtype: object
    """
    nodes = []
    edges = []
    nodes_id = dict()
    nodes_label = dict()
    for id, label in enumerate(G.nodes()):
        nodes_id[label] = id + 1
        nodes_label[id + 1] = label
        nodes.append(id + 1)
    for (u, v) in G.edges():
        edges.append((nodes_id[u], nodes_id[v]))
    new_graph = nx.Graph()
    new_graph.add_nodes_from(nodes)
    for node in nodes:
        new_graph.add_node(node, labels = node)
    new_graph.add_edges_from(edges)
    return new_graph

参考博客:【Python】networkx读取gml图文件,有两个问题影响使用


图数据读取后,如何得到节点集和边集?

在图数据读取后,我们在算法中处理数据时往往会对图的节点集和边集进行处理,下面提供几种遍历方式:

  • G.edges():返回的是列表,列表中为边连接二元组(u, v)

    G = nx.karate_club_graph()
    print(G.edges())
    for edge in G.edges():
        ···
    
  • G.nodesG.nodes()返回值一样,均是节点集列表

  • 遍历id、labels

    for id, label in enumerate(G.nodes()):
        print("id, label-> ", id , ":", label)
    
  • 读取节点属性

    for node in G.nodes:
        print('---> ', G.nodes[node])
        print('---| ', G.nodes[node]['value'])
        print('---< ', G._node[node]['labels'])
    

如何绘制多样的图?

在绘制图时,有时我们可能需要为节点着不同的颜色,展示不同属性和大小等等,需要为边添加不同的线型,颜色、粗细等等,这时需要分步绘制,其各类属性如下:

# 画点
draw_networkx_nodes(G, pos, nodelist=None, node_size=300, node_color='#1f78b4', node_shape='o', alpha=None,cmap=None, 
	vmin=None, vmax=None, ax=None, linewidths=None, edgecolors=None, label=None, **kwds)
# 画边
draw_networkx_edges(G, pos, edgelist=None, width=1.0, edge_color='k', style='solid', alpha=None, arrowstyle='-|>', arrowsize=10, 
	edge_cmap=None, edge_vmin=None, edge_vmax=None, ax=None, arrows=True, label=None, node_size=300, nodelist=None, 
	node_shape='o', connectionstyle=None, min_source_margin=0, min_target_margin=0, **kwds)
# 标签
draw_networkx_labels(G, pos, labels=None, font_size=12, font_color='k', font_family='sans-serif', font_weight='normal', 
	alpha=None, bbox=None, ax=None, **kwds)
# 边的标签	
draw_networkx_edge_labels(G, pos, edge_labels=None, label_pos=0.5, font_size=10, font_color='k', font_family='sans-serif', 
	font_weight='normal', alpha=None, bbox=None, ax=None, rotate=True, **kwds)

属性参考博客链接:networkx —— 基本操作及画图

🎈

下面以karate_club数据集为例绘制图:

import networkx as nx
import matplotlib.pyplot as plt

G = nx.karate_club_graph()

pos = nx.spring_layout(G) # 节点的布局为spring型
plt.figure(figsize = (6, 6)) # 图片大小

nodes = list(G.nodes())
vn = len(nodes)
nodes1 = [nodes[i] for i in range(0, (int)(vn / 2))]
nodes2 = [nodes[i] for i in range((int)(vn / 2), vn)]
nx.draw_networkx_nodes(G, pos = pos, nodelist=nodes1, node_color='r', node_size=140)
nx.draw_networkx_nodes(G, pos = pos, nodelist=nodes2, node_color='y', node_size=80)

edges = list(G.edges())
en = len(edges)
edges1 = [edges[i] for i in range(0, (int)(en / 2))]
edges2 = [edges[i] for i in range((int)(vn / 2), en)]
nx.draw_networkx_edges(G, pos = pos, edgelist=edges1, style='dashed', edge_color='g', width=1.0 , alpha='0.6')
nx.draw_networkx_edges(G, pos = pos, edgelist=edges2, style='dashed', edge_color='b', width=1.0 )

plt.show()

绘制结果如下

在这里插入图片描述


详细networkx使用见官网https://networkx.org/
官方文档已上传至资源☞☞☞传送门networkx.pdf

以上是关于networkx之图遍历和图绘制的主要内容,如果未能解决你的问题,请参考以下文章

Plotly Dash:在 Python 中绘制 networkx

添加边缘权重以在 networkx 中绘制输出

如何用networkx绘制社区

JavaScript--数据结构与算法之图

使用 Graphviz 绘制 NetworkX 图

使用默认为节点名称的节点标签绘制 networkx 图