Kafka-分区分配策略

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Kafka-分区分配策略相关的知识,希望对你有一定的参考价值。

参考技术A 所谓的再平衡,指的是在kafka consumer所订阅的topic发生变化时发生的一种分区重分配机制。一般有三种情况会触发再平衡:

kafka 消费者分区分配策略

kafka 消费者分区分配策略

Note:采用kafka1.1版本源码进行分析

在消费者客户端中有一个参数配置partition.assignment.strategy,是用来配置消费者Client和Topic的分区分配策略,就是指消费者客户端消费订阅的topic的哪些分区,默认值是org.apache.kafka.clients.consumer.RangeAssignor,这是一个默认的分区分配策略。

通过这个类的继承关系,可以发现其父类是一个实现了PartitionAssignor接口的抽象类AbstractPartitionAssignor。这个抽象类目前在1.1版本中一共有3个子类。

  1. RangeAssignor

    范围分配器

  2. RoundRobinAssignor

    轮询分配器

  3. StickyAssignor

    粘性分配器

以上分配器都重写在类AbstractPartitionAssignor中的抽象方法assign,这个方法是分配器具体的分配实现方法。

public abstract Map<String, List<TopicPartition>> assign(Map<String, Integer> partitionsPerTopic,
                                                         Map<String, Subscription> subscriptions);
  • 入参
  1. Map<String, Integer> partitionsPerTopic

    key:topic

    Value:分区数量(大于0)

  2. Map<String, Subscription> subscriptions

    key:numberid 消费者组协调器为消费者分配的组成员id,其值是Client与UUID的组合

    val memberId = clientId + "-" + UUID.randomUUID().toString
    

    value;Subscription 消费者订阅了哪些topic和自定义数据

  • 结果
  1. Map<String, Assignment> assignment

    key:numberid,消费者的组成员id

    Value:List<TopicPartition>,topic分区对象的列表

    /**
     * 构建出Topic分区对象列表
     *
     * @param topic Topic名称
     * @param numPartitions 分区数量
     * @return List<TopicPartition>
     */
    protected static List<TopicPartition> partitions(String topic, int numPartitions) {
        List<TopicPartition> partitions = new ArrayList<>(numPartitions);
        for (int i = 0; i < numPartitions; i++)
            partitions.add(new TopicPartition(topic, i));
        return partitions;
    }

范围分配 RangeAssignor

假设m=Topic的分区数/订阅这个Topic的消费者数量,n=Topic的分区数%订阅这个Topic的消费者数量。那么前m个消费者会订阅n+1个分区,剩余的消费者订阅n个分区。

数据演示

若有两个消费者C0和C1,两个拥有4个分区的Topic(t0,t1),分区列表为t0p0,t0p1,t0p2,t0p3,t1p0,t1p1,t1p2,t1p3

C0:[t0p0, t0p1, t1p0, t1p1]
C1:[t0p2, t0p3, tt1p2, t1p3]

若有两个消费者C0和C1,两个拥有3个分区的Topic(t0,t1),分区列表为t0p0,t0p1,t0p2,t1p0,t1p1,t1p2

C0:[t0p0, t0p1, t1p0, t1p1]
C1:[t0p2, t1p2]

部分源码分析

在这里插入图片描述
RangeAssignor类中的有个assign方法 这是用来计算分配的。

    @Override
    public Map<String, List<TopicPartition>> assign(Map<String, Integer> partitionsPerTopic,
                                                    Map<String, Subscription> subscriptions) {
        // 获取topic与消费者id关系的map, key为Topic Value为订阅这个topic的消费者的id的List
        Map<String, List<String>> consumersPerTopic = consumersPerTopic(subscriptions);
        Map<String, List<TopicPartition>> assignment = new HashMap<>();
        for (String memberId : subscriptions.keySet())
            assignment.put(memberId, new ArrayList<TopicPartition>());

        for (Map.Entry<String, List<String>> topicEntry : consumersPerTopic.entrySet()) {
            String topic = topicEntry.getKey();
            List<String> consumersForTopic = topicEntry.getValue();
            // 获取每个Topic的partition数量
            Integer numPartitionsForTopic = partitionsPerTopic.get(topic);
            if (numPartitionsForTopic == null)
                continue;
            // 对Topic的消费者的id进行升序排序
            Collections.sort(consumersForTopic);
            // Topic的分区数/订阅这个Topic的消费者数量的整数商
            int numPartitionsPerConsumer = numPartitionsForTopic / consumersForTopic.size();
            // Topic的分区数%订阅这个Topic的消费者数量的余数
            int consumersWithExtraPartition = numPartitionsForTopic % consumersForTopic.size();
            // 构建主题分区列表
            List<TopicPartition> partitions = AbstractPartitionAssignor.partitions(topic, numPartitionsForTopic);
            for (int i = 0, n = consumersForTopic.size(); i < n; i++) {
                int start = numPartitionsPerConsumer * i + Math.min(i, consumersWithExtraPartition);
                int length = numPartitionsPerConsumer + (i + 1 > consumersWithExtraPartition ? 0 : 1);
                assignment.get(consumersForTopic.get(i)).addAll(partitions.subList(start, start + length));
            }
        }
        return assignment;
    }

轮询分配RoundRobinAssignor

将所有的Topic分区进行排序后,依次遍历Topic分区,轮询所有的消费者依次为这些Topic分区分配消费者。

数据演示

若有两个消费者C0和C1,两个拥有3个分区的Topic(t0,t1),分区列表为t0p0, t0p1, t0p2, t1p0, t1p1, t1p2

C0:[t0p0, t0p2, t1p1]
C1:[t0p1, t1p0, t1p2]

若有3个消费者C0,C1,C2,有3个Topic(t0, t1, t2),分区列表为t0p0,t1p0,t1p1,t2p0, t2p1, t2p2

C0: [t0p0]
C1: [t1p0]
C2: [t1p1, t2p0, t2p1, t2p2]

部分源码分析

在这里插入图片描述

public Map<String, List<TopicPartition>> assign(Map<String, Integer> partitionsPerTopic,
                                                Map<String, Subscription> subscriptions) {
    Map<String, List<TopicPartition>> assignment = new HashMap<>();
    for (String memberId : subscriptions.keySet())
        assignment.put(memberId, new ArrayList<TopicPartition>());
    // 循环迭代器- 根据消费者id进行排序 升序
    CircularIterator<String> assigner = new CircularIterator<>(Utils.sorted(subscriptions.keySet()));
    // 根据Topics排序,在获取每个topic的分区数,确保顺序的一致性,遍历分区
    for (TopicPartition partition : allPartitionsSorted(partitionsPerTopic, subscriptions)) {
        final String topic = partition.topic();
        // 寻找订阅了这个topic的消费者,为消费者分配这个topic的分区
        while (!subscriptions.get(assigner.peek()).topics().contains(topic))
            assigner.next();
        assignment.get(assigner.next()).add(partition);
    }
    return assignment;
}

对Topic进行排序去重,根据Topic的顺序进行其下分区的创建填充分区列表。

public List<TopicPartition> allPartitionsSorted(Map<String, Integer> partitionsPerTopic,
                                                Map<String, Subscription> subscriptions) {
    SortedSet<String> topics = new TreeSet<>();
    for (Subscription subscription : subscriptions.values())
        topics.addAll(subscription.topics());

    List<TopicPartition> allPartitions = new ArrayList<>();
    for (String topic : topics) {
        Integer numPartitionsForTopic = partitionsPerTopic.get(topic);
        if (numPartitionsForTopic != null)
            allPartitions.addAll(AbstractPartitionAssignor.partitions(topic, numPartitionsForTopic));
    }
    return allPartitions;
}

循环的迭代器

public class CircularIterator<T> implements Iterator<T> {
    int i = 0; // 下标
    private List<T> list; // 数据项

    public CircularIterator(List<T> list) {
        if (list.isEmpty()) {
            throw new IllegalArgumentException("CircularIterator can only be used on non-empty lists");
        }
        this.list = list;
    }

    @Override
    public boolean hasNext() {
        return true;
    }

    /**
     * 任何遍历 下标+1后与元素数量取模 i的取值在 [0,size-1]中循环
     */
    @Override
    public T next() {
        T next = list.get(i);
        i = (i + 1) % list.size();
        return next;
    }

    /**
     * 获取元素
     */
    public T peek() {
        return list.get(i);
    }

    /**
     * 不支持移除元素
     */
    @Override
    public void remove() {
        throw new UnsupportedOperationException();
    }
}

粘性分配法 StickyAssignor

使用黏性分配法是为了以下两点,第一点的优先级高于第二点。

  1. 是的分区和消费者的分配尽量均衡
  2. 尽可能的对上次的分配结果不进行大的调整

数据演示

原来的 3个消费者(C0,C1,C2),3个Topic(t0,t1,t2),分区列表 t0p0,t1p0,t1p1,t2p0,t2p1,t2p1,C0没有订阅t1,t2

C0: t0p0
C1:t1p0,t1p1
C2:t2p0,t2p1,t2p1

现在C0下线,重新分配

C1:t1p0,t1p1, t0p0
C2:t2p0,t2p1,t2p1

结果中原来的分区并没有动,而是将 t0p0分配给了分区数少的C1,使得分配变得均衡和尽可能不改变原来的分配结果。这样优化了在再分配分区时造成的重复消费和资源浪费,以及减少其他异常的发生。

分配主流程

在这里插入图片描述

部分源码分析

在这里插入图片描述

public Map<String, List<TopicPartition>> assign(Map<String, Integer> partitionsPerTopic,
                                                Map<String, Subscription> subscriptions) {
    Map<String, List<TopicPartition>> currentAssignment = new HashMap<>();
    partitionMovements = new PartitionMovements();
    // 预分配的分配方案--此时的currentAssignment中是通过Subscription中的UserData来确认分配的
    prepopulateCurrentAssignments(subscriptions, currentAssignment);
    // 如果预分配的结果为空,表明是一个全新的分配
    boolean isFreshAssignment = currentAssignment.isEmpty();

    // a mapping of all topic partitions to all consumers that can be assigned to them
    // key为分区 Value是消费者id的list
    final Map<TopicPartition, List<String>> partition2AllPotentialConsumers = new HashMap<>();
    // a mapping of all consumers to all potential topic partitions that can be assigned to them
    // key为消费者id Value为分区的list
    final Map<String, List<TopicPartition>> consumer2AllPotentialPartitions = new HashMap<>();

    // initialize partition2AllPotentialConsumers and consumer2AllPotentialPartitions in the following two for loops
    // 遍历topic与分区数的Map,为partition2AllPotentialConsumers填充值,每个分区都是一个map的key,此时Value是空
    for (Entry<String, Integer> entry: partitionsPerTopic.entrySet()) {
        for (int i = 0; i < entry.getValue(); ++i)
            partition2AllPotentialConsumers.put(new TopicPartition(entry.getKey(), i), new ArrayList<String>());
    }
    // 遍历消费者与订阅的topic关系的map
    for (Entry<String, Subscription> entry: subscriptions.entrySet()) {
        String consumer = entry.getKey();
        // 取出消费者的id,每个消费者都是consumer2AllPotentialPartitions的一个key,此时对应的Value是空
        consumer2AllPotentialPartitions.put(consumer, new ArrayList<TopicPartition>());
        // 遍历每个消费者订阅的topics
        for (String topic: entry.getValue().topics()) {
            // 获取每个topic的分区数,遍历每个分区
            for (int i = 0; i < partitionsPerTopic.get(topic); ++i) {
                TopicPartition topicPartition = new TopicPartition(topic, i);
                // 为consumer2AllPotentialPartitions每个消费者填充Value中的分区数
                consumer2AllPotentialPartitions.get(consumer).add(topicPartition);
                // 为partition2AllPotentialConsumers中每个分区填充Value中的消费者
                partition2AllPotentialConsumers.get(topicPartition).add(consumer);
            }
        }

        // add this consumer to currentAssignment (with an empty topic partition assignment) if it does not already exist
        // 一般不是全新分配的时候 没有currentAssignment中没有元素,需要填充每个消费者进行初始化
        if (!currentAssignment.containsKey(consumer))
            currentAssignment.put(consumer, new ArrayList<TopicPartition>());
    }

    // a mapping of partition to current consumer
    // 现有的每个分区与对应消费者的Map
    Map<TopicPartition, String> currentPartitionConsumer = new HashMap<>();
    //遍历现有的分配结果
    for (Map.Entry<String, List<TopicPartition>> entry: currentAssignment.entrySet())
        // 遍历每一个分区
        for (TopicPartition topicPartition: entry.getValue())
            // 填充currentPartitionConsumer,key是分区,Value是消费者id
            currentPartitionConsumer.put(topicPartition, entry.getKey());

    List<TopicPartition> sortedPartitions = sortPartitions(
            currentAssignment, isFreshAssignment, partition2AllPotentialConsumers, consumer2AllPotentialPartitions);

    // all partitions that need to be assigned (initially set to all partitions but adjusted in the following loop)
    // 将需要进行分配的分区列表
    List<TopicPartition> unassignedPartitions = new ArrayList<>(sortedPartitions);
    // 遍历分配结果
    for (Iterator<Map.Entry<String, List<TopicPartition>>> it = currentAssignment.entrySet().iterator(); it.hasNext();) {
        Map.Entry<String, List<TopicPartition>> entry = it.next();
        // 如果分配结果中的消费者不存在了则清除这个消费者的订阅的topic的分区数
        if (!subscriptions.containsKey(entry.getKey())) {
            // if a consumer that existed before (and had some partition assignments) is now removed, remove it from currentAssignment
            for (TopicPartition topicPartition: entry.getValue())
                currentPartitionConsumer.remove(topicPartition);
            it.remove();
        } else {
            // otherwise (the consumer still exists)
            // 遍历消费者的分配的分区们
            for (Iterator<TopicPartition> partitionIter = entry.getValue().iterator(); partitionIter.hasNext();) {
                TopicPartition partition = partitionIter.next();
                // 如果此消费者的此主题分区不再存在,则将其从消费者的 currentAssignment 中删除
                if (!partition2AllPotentialConsumers.containsKey(partition)) {
                    // if this topic partition of this consumer no longer exists remove it from currentAssignment of the consumer
                    partitionIter.remove();
                    currentPartitionConsumer.remove(partition);
                } 
                // 如果原来消费者订阅的主题与分区的主题不对应 则为currentAssignment的消费者删除该分区
                else if (!subscriptions.get(entry.getKey()).topics().contains(partition.topic())) {
                    // if this partition cannot remain assigned to its current consumer because the consumer
                    // is no longer subscribed to its topic remove it from currentAssignment of the consumer
                    partitionIter.remove();
                }
                // 说明此分区不需要调整,保持原有的分配结果,从需要分配分区的集合中删除它
                else
                    // otherwise, remove the topic partition from those that need to be assigned only if
                    // its current consumer is still subscribed to its topic (because it is already assigned
                    // and we would want to preserve that assignment as much as possible)
                    unassignedPartitions.remove(partition);
            }
        }
    }
    // at this point we have preserved all valid topic partition to consumer assignments and removed
    // all invalid topic partitions and invalid consumers. Now we need to assign unassignedPartitions
    // to consumers so that the topic partition assignments are as balanced as possible.

    // an ascending sorted set of consumers based on how many topic partitions are already assigned to them
    TreeSet<String> sortedCurrentSubscriptions = new TreeSet<>(new SubscriptionComparator(currentAssignment));
    sortedCurrentSubscriptions.addAll(currentAssignment.keySet());

    balance(currentAssignment, sortedPartitions, unassignedPartitions, sortedCurrentSubscriptions,
            consumer2AllPotentialPartitions, partition2AllPotentialConsum

以上是关于Kafka-分区分配策略的主要内容,如果未能解决你的问题,请参考以下文章

kafka消费者分区分配策略

kafka 消费者分区分配策略

数据写入kafka的分区策略

Kafka分区分配策略分析——重点:StickyAssignor

Kafka 原理以及分区分配策略剖析

Kafka分区分配策略(Partition Assignment Strategy