C++ 实现map容器和set容器
Posted Wecccccccc
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了C++ 实现map容器和set容器相关的知识,希望对你有一定的参考价值。
代码如下:
#pragma once
#include <iostream>
using namespace std;
enum COLOR
{
BLACK, RED
};
template<class V>//迭代器声明,定义在后面
struct RBTreeIterator;
template<typename V>
struct RBTreeNode
{
RBTreeNode<V> * _parent;
RBTreeNode<V>* _left;
RBTreeNode<V> *_right;
V _val;
COLOR _color;
RBTreeNode(const V &val = V()) :_parent(nullptr), _left(nullptr), _right(nullptr), _val(val), _color(RED) {}
};
template<typename K, typename V, typename KeyOfValue>
class RBTree
{
public:
typedef RBTreeNode<V> Node;
typedef RBTreeIterator<V> iterator;
RBTree() :_header(new Node)
{
_header->_left = _header->_right = _header;
}
pair<iterator, bool> insert(const V &val)
{
if (_header->_parent == nullptr)
{
Node * root = new Node(val);
_header->_parent = root;
root->_parent = _header;
_header->_left = _header->_right = root;
//根结点为黑色
root->_color = BLACK;
return make_pair(iterator(root), true);
}
Node *cur = _header->_parent;
Node *parent = nullptr;
KeyOfValue kov;
//1.寻找要插入的结点的位置
while (cur)
{
parent = cur;
if (kov(cur->_val) == kov(val)) return make_pair(iterator(cur), false);
else if (kov(cur->_val) > kov(val)) cur = cur->_left;
else cur = cur->_right;
}
//2.创建结点
cur = new Node(val);
Node *node = cur;//记录插入的结点的位置,方便后面返回。
if (kov(parent->_val) > kov(cur->_val)) parent->_left = cur;
else parent->_right = cur;
cur->_parent = parent;
//3.颜色的修改或者结构的调整
while (cur != _header->_parent && cur->_parent->_color == RED)
{
parent = cur->_parent;
Node *gfather = parent->_parent;
if (gfather->_left == parent)
{
Node *uncle = gfather->_right;
//情况1.uncle存在且为红
if (uncle && uncle->_color == RED)
{
parent->_color = uncle->_color = BLACK;
gfather->_color = RED;
//向上追溯
cur = gfather;
}
else
{
if (parent->_right == cur)//情况3
{
RotateL(parent);
swap(cur, parent);
}
//2.uncle不存在或者uncle为黑
RotateR(gfather);
parent->_color = BLACK;
gfather->_color = RED;
break;
}
}
else
{
Node *uncle = gfather->_left;
if (uncle && uncle->_color == RED)
{
parent->_color = uncle->_color = BLACK;
gfather->_color = RED;
cur = gfather;
}
else
{
if (parent->_left == cur)
{
RotateR(parent);
swap(cur, parent);
}
RotateL(gfather);
parent->_color = BLACK;
gfather->_color = RED;
break;
}
}
}
//根结点为黑色
_header->_parent->_color = BLACK;
//更新头结点的左右指向
_header->_left = leftMost();
_header->_right = rightMost();
return make_pair(iterator(node), true);
}
void RotateL(Node *parent)
{
Node *subR = parent->_right;
Node *subRL = subR->_left;
parent->_right = subRL;
if (subRL) subRL->_parent = parent;
if (parent == _header->_parent)
{
_header->_parent = subR;
subR->_parent = _header;
}
else
{
Node *gfather = parent->_parent;
if (gfather->_left == parent) gfather->_left = subR;
else gfather->_right = subR;
subR->_parent = gfather;
}
subR->_left = parent;
parent->_parent = subR;
}
void RotateR(Node * parent)
{
Node *subL = parent->_left;
Node *subLR = subL->_right;
parent->_left = subLR;
if (subLR) subLR->_parent = parent;
if (parent == _header->_parent)
{
_header->_parent = subL;
subL->_parent = _header;
}
else
{
Node *gfather = parent->_parent;
if (gfather->_left == parent) gfather->_left = subL;
else gfather->_right = subL;
subL->_parent = gfather;
}
subL->_right = parent;
parent->_parent = subL;
}
Node *leftMost()
{
Node *cur = _header->_parent;
while (cur && cur->_left)
{
cur = cur->_left;
}
return cur;
}
Node *rightMost()
{
Node *cur = _header->_parent;
while (cur && cur->_right)
{
cur = cur->_right;
}
return cur;
}
iterator begin()
{
return iterator(_header->_left);
}
iterator end()
{
return iterator(_header);
}
//反向迭代器
iterator rbegin()
{
return iterator(_header->_right);
}
private:
Node *_header;
};
template<class V>
struct RBTreeIterator
{
typedef RBTreeNode<V> Node;
typedef RBTreeIterator<V> Self;
Node *_node;
RBTreeIterator(Node *node) :_node(node) {}
V & operator*()
{
return _node->_val;
}
V * operator->()
{
return &_node->_val;
}
bool operator!=(const Self & it)
{
return _node != it._node;
}
Self & operator++()
{
if (_node->_right)//存在右结点
{
//右子树的最左结点
_node = _node->_right;
while (_node->_left)
{
_node = _node->_left;
}
}
else//不存在右结点
{
Node *parent = _node->_parent;
while (_node == parent->_right)//回溯
{
_node = parent;
parent = parent->_parent;
}
//特殊情况:根结点没有右孩子,则不需要更新结点
if (_node->_right != parent) _node = parent;
}
return *this;
}
Self & operator--()
{
if (_node->_left)
{
//右子树的最左结点
_node = _node->_left;
while (_node->_right)
{
_node = _node->_right;
}
}
else
{
Node *parent = _node->_parent;
while (_node == parent->_left)
{
_node = parent;
parent = parent->_parent;
}
if (_node->_left != parent) _node = parent;
}
return *this;
}
};
template<typename K, typename T>
class Map
{
struct MapKeyOfValue
{
const K& operator()(const pair<K, T> & val)
{
return val.first;
}
};
public:
typedef typename RBTree<K, pair<K, T>, MapKeyOfValue>::iterator iterator;
pair<iterator, bool> insert(const pair<K, T> & kv)
{
return _rbt.insert(kv);
}
T & operator[](const K &key)
{
pair<iterator, bool> ret = _rbt.insert(make_pair(key, T()));
return ret.first->second;
}
iterator begin()
{
return _rbt.begin();
}
iterator end()
{
return _rbt.end();
}
iterator rbegin()
{
return _rbt.rbegin();
}
private:
typedef RBTree<K, pair<K, T>, MapKeyOfValue> rbt;
rbt _rbt;
};
template<typename K>
class Set
{
struct SetKeyOfValue
{
const K & operator()(const K & val)
{
return val;
}
};
public:
bool insert(const K &val)
{
return _rbt.insert(val);
}
private:
typedef RBTree<K, K, SetKeyOfValue> rbt;
rbt _rbt;
};
测试代码如下:
#include<iostream>
#include "Map.h"
using namespace std;
int main()
{
Map<int, int> m;
m.insert(make_pair(1, 1));
m.insert(make_pair(2, 1));
m.insert(make_pair(3, 1));
m.insert(make_pair(4, 1));
Map<int, int>::iterator it = m.begin();
while (it != m.end())
{
//it-> 获取结点的val的地址 => pair指针
//pair->first获得pair对象的第一个值
//pair->second获得pair对象的第二个值
cout << it->first << " " << it->second << endl;
++it;
}
Map<int, int>::iterator it1 = m.rbegin();
while (it1 != m.end())
{
cout << it1->first << " " << it1->second << endl;
--it1;
}
Map<int, int> m1;
m1[1] = 1;
m1[3] = 20;
m1[2] = 300;
m1[4] = 4000;
Map<int, int>::iterator it2 = m1.begin();
while (it2 != m1.end())
{
cout << it2->first << " " << it2->second << endl;
++it2;
}
return 0;
}
测试结果:
以上是关于C++ 实现map容器和set容器的主要内容,如果未能解决你的问题,请参考以下文章
C++进阶第二十篇——map和set(map和set的用法+multimap+multiset+map和set代码实现)