Elasticsearch-尚硅谷(7. 进阶-下)学习笔记
Posted yuan_404
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Elasticsearch-尚硅谷(7. 进阶-下)学习笔记相关的知识,希望对你有一定的参考价值。
上一篇:(6. Elasticsearch 环境-上)学习笔记
5. 分片控制
- 我们假设有一个集群由三个节点组成。 它包含一个叫 emps 的索引,有两个主分片,每个主分片有两个副本分片。相同分片的副本不会放在同一节点。
- 通过 elasticsearch-head 插件查看集群情况,所以我们的集群是一个有三个节点和一个索引的集群。
- 我们可以发送请求到集群中的任一节点。 每个节点都有能力处理任意请求。 每个节点都知道集群中任一文档位置,所以可以直接将请求转发到需要的节点上。 在下面的例子中,将所有的请求发送到 Node 1,我们将其称为 协调节点(coordinating node) 。
- 当发送请求的时候, 为了扩展负载,更好的做法是轮询集群中所有的节点。
5.1 写流程
- 新建、索引和删除 请求都是 写 操作, 必须在主分片上面完成之后才能被复制到相关的副本分片
- 新建,索引和删除文档所需要的步骤顺序:
- 客户端向 Node 1 发送新建、索引或者删除请求。
- 节点使用文档的 _id 确定文档属于分片 0 。请求会被转发到 Node 3,因为分片 0 的主分片目前被分配在 Node 3 上。
- Node 3 在主分片上面执行请求。如果成功了,它将请求并行转发到 Node 1 和 Node 2 的副本分片上。一旦所有的副本分片都报告成功, Node 3 将向协调节点报告成功,协调节点向客户端报告成功。
- 在客户端收到成功响应时,文档变更已经在主分片和所有副本分片执行完成,变更是安全的。有一些可选的请求参数允许您影响这个过程,可能以数据安全为代价提升性能。这些选项很少使用,因为 Elasticsearch 已经很快,但是为了完整起见,请参考下面表格:
参数 | 含义 |
---|---|
consistency | consistency,即一致性。在默认设置下,即使仅仅是在试图执行一个_写_操作之前,主分片都会要求 必须要有 规定数量(quorum)(或者换种说法,也即必须要有大多数)的分片副本处于活跃可用状态,才会去执行_写_操作(其中分片副本可以是主分片或者副本分片)。这是为了避免在发生网络分区故障(network partition)的时候进行_写_操作,进而导致数据不一致。_规定数量_即:int( (primary + number_of_replicas) / 2 ) + 1consistency 参数的值可以设为 one (只要主分片状态 ok 就允许执行_写_操作),all(必须要主分片和所有副本分片的状态没问题才允许执行_写_操作), 或quorum 。默认值为 quorum , 即大多数的分片副本状态没问题就允许执行_写_操作。注意,规定数量 的计算公式中 number_of_replicas 指的是在索引设置中的设定副本分片数,而不是指当前处理活动状态的副本分片数。如果你的索引设置中指定了当前索引拥有三个副本分片,那规定数量的计算结果即:int( (primary + 3 replicas) / 2 ) + 1 = 3如果此时你只启动两个节点,那么处于活跃状态的分片副本数量就达不到规定数量,也因此您将无法索引和删除任何文档 |
timeout | 如果没有足够的副本分片会发生什么? Elasticsearch 会等待,希望更多的分片出现。默认情况下,它最多等待 1 分钟。 如果你需要,你可以使用 timeout 参数使它更早终止: 100 100 毫秒,30s 是 30 秒。 |
- 新索引默认有 1 个副本分片,这意味着为满足规定数量应该需要两个活动的分片副本。 但是,这些默认的设置会阻止我们在单一节点上做任何事情。为了避免这个问题,要求只有 number_of_replicas 大 于 1 的时候,规定数量才会执行。
5.2 读流程
- 从主分片或者副本分片检索文档的步骤顺序:
- 客户端向 Node 1 发送获取请求。
- 节点使用文档的 _id 来确定文档属于分片 0 。分片 0 的副本分片存在于所有的三个节点上。 在这种情况下,它将请求转发到 Node 2 。
- Node 2 将文档返回给 Node 1 ,然后将文档返回给客户端。
- 在处理读取请求时,协调结点在每次请求的时候都会通过轮询所有的副本分片来达到负载均衡。在文档被检索时,已经被索引的文档可能已经存在于主分片上但是还没有复制到副本分片。 在这种情况下,副本分片可能会报告文档不存在,但是主分片可能成功返回文档。 一旦索引请求成功返回给用户,文档在主分片和副本分片都是可用的。
5.3 更新流程
- 部分更新一个文档的步骤如下:
- 客户端向 Node 1 发送更新请求。
- 它将请求转发到主分片所在的 Node 3 。
- Node 3 从主分片检索文档,修改 _source 字段中的 JSON ,并且尝试重新索引主分片的文档。如果文档已经被另一个进程修改,它会重试步骤 3 ,超过 retry_on_conflict 次后放弃。
- 如果 Node 3 成功地更新文档,它将新版本的文档并行转发到 Node 1 和 Node 2 上的副本分片,重新建立索引。一旦所有副本分片都返回成功, Node 3 向协调节点也返回成功,协调节点向客户端返回成功。
- 当主分片把更改转发到副本分片时, 它不会转发更新请求。 相反,它转发完整文档的新版本。请记住,这些更改将会异步转发到副本分片,并且不能保证它们以发送它们相同的顺序到达。 如果Elasticsearch 仅转发更改请求,则可能以错误的顺序应用更改,导致得到损坏的文档。
5.4 多文档操作流程
- mget 和 bulk API 的模式类似于单文档模式。区别在于协调节点知道每个文档存在于哪个分片中。它将整个多文档请求分解成 每个分片 的多文档请求,并且将这些请求并行转发到每个参与节点。
- 协调节点一旦收到来自每个节点的应答,就将每个节点的响应收集整理成单个响应,返回给客户端
- 用单个 mget 请求取回多个文档所需的步骤顺序:
- 客户端向 Node 1 发送 mget 请求。
- Node 1 为每个分片构建多文档获取请求,然后并行转发这些请求到托管在每个所需的
主分片或者副本分片的节点上。一旦收到所有答复, Node 1 构建响应并将其返回给客
户端。
bulk API, 允许在单个批量请求中执行多个创建、索引、删除和更新请求
- bulk API 按如下步骤顺序执行:
- 客户端向 Node 1 发送 bulk 请求。
- Node 1 为每个节点创建一个批量请求,并将这些请求并行转发到每个包含主分片的节点主机。
- 主分片一个接一个按顺序执行每个操作。当每个操作成功时,主分片并行转发新文档(或删除)到副本分片,然后执行下一个操作。 一旦所有的副本分片报告所有操作成功,该节点将向协调节点报告成功,协调节点将这些响应收集整理并返回给客户端。
6 分片原理
- 分片是 Elasticsearch 最小的工作单元。但是究竟什么是一个分片,它是如何工作的?
传统的数据库每个字段存储单个值,但这对全文检索并不够。文本字段中的每个单词需要被搜索,对数据库意味着需要单个字段有索引多值的能力。最好的支持是一个字段多个值需求的数据结构是倒排索引。
6.1 倒排索引
- Elasticsearch 使用一种称为倒排索引的结构,它适用于快速的全文搜索。见其名,知其意,有倒排索引,肯定会对应有正向索引。正向索引(forward index),反向索引(inverted index)更熟悉的名字是倒排索引。所谓的正向索引,就是搜索引擎会将待搜索的文件都对应一个文件 ID,搜索时将这个 ID 和搜索关键字进行对应,形成 K-V 对,然后对关键字进行统计计数
- 但是互联网上收录在搜索引擎中的文档的数目是个天文数字,这样的索引结构根本无法满足实时返回排名结果的要求。所以,搜索引擎会将正向索引重新构建为倒排索引,即把文件ID对应到关键词的映射转换为关键词到文件ID的映射,每个关键词都对应着一系列的文件,这些文件中都出现这个关键词。
- 一个倒排索引由文档中所有不重复词的列表构成,对于其中每个词,有一个包含它的文档列表。例如,假设我们有两个文档,每个文档的 content 域包含如下内容:
- The quick brown fox jumped over the lazy dog
- Quick brown foxes leap over lazy dogs in summer
- 为了创建倒排索引,我们首先将每个文档的 content 域拆分成单独的 词(我们称它为 词条 或 tokens ),创建一个包含所有不重复词条的排序列表,然后列出每个词条出现在哪个文档。结果如下所示:
- 现在,如果我们想搜索 quick brown ,我们只需要查找包含每个词条的文档:
- 两个文档都匹配,但是第一个文档比第二个匹配度更高。如果我们使用仅计算匹配词条数量的简单相似性算法,那么我们可以说,对于我们查询的相关性来讲,第一个文档比第二个文档更佳。
- 但是,我们目前的倒排索引有一些问题:
- Quick 和 quick 以独立的词条出现,然而用户可能认为它们是相同的词。
- fox 和 foxes 非常相似, 就像 dog 和 dogs ;他们有相同的词根。
- jumped 和 leap, 尽管没有相同的词根,但他们的意思很相近。他们是同义词。
- 使用前面的索引搜索 +Quick +fox 不会得到任何匹配文档。(记住,+ 前缀表明这个词必须存在。)只有同时出现 Quick 和 fox 的文档才满足这个查询条件,但是第一个文档包含quick fox ,第二个文档包含 Quick foxes 。
- 我们的用户可以合理的期望两个文档与查询匹配。我们可以做的更好。如果我们将词条规范为标准模式,那么我们可以找到与用户搜索的词条不完全一致,但具有足够相关性的文档。
- 例如:
- Quick 可以小写化为 quick 。
- foxes 可以 词干提取 --变为词根的格式-- 为 fox 。类似的, dogs 可以为提取为 dog 。
- jumped 和 leap 是同义词,可以索引为相同的单词 jump 。
- 现在索引看上去像这样:
- 这还远远不够。我们搜索 +Quick +fox 仍然 会失败,因为在我们的索引中,已经没有 Quick 了。但是,如果我们对搜索的字符串使用与 content 域相同的标准化规则,会变成查询+quick +fox,这样两个文档都会匹配!分词和标准化的过程称为分析
- 这非常重要。你只能搜索在索引中出现的词条,所以索引文本和查询字符串必须标准化为相
同的格式。
6.2 文档搜索
- 早期的全文检索会为整个文档集合建立一个很大的倒排索引并将其写入到磁盘。 一旦新的索引就绪,旧的就会被其替换,这样最近的变化便可以被检索到。倒排索引被写入磁盘后是 不可改变 的:它永远不会修改。不变性有重要的价值:
- 不需要锁。如果你从来不更新索引,你就不需要担心多进程同时修改数据的问题。
- 一旦索引被读入内核的文件系统缓存,便会留在哪里,由于其不变性。只要文件系统缓存中还有足够的空间,那么大部分读请求会直接请求内存,而不会命中磁盘。这提供了很大的性能提升。
- 其它缓存(像 filter 缓存),在索引的生命周期内始终有效。它们不需要在每次数据改变时被重建,因为数据不会变化。
- 写入单个大的倒排索引允许数据被压缩,减少磁盘 I/O 和 需要被缓存到内存的索引的使用量。
- 当然,一个不变的索引也有不好的地方。主要事实是它是不可变的! 你不能修改它。如果你需要让一个新的文档 可被搜索,你需要重建整个索引。这要么对一个索引所能包含的数据量造成了很大的限制,要么对索引可被更新的频率造成了很大的限制。
6.3 动态更新索引
- 如何在保留不变性的前提下实现倒排索引的更新?
答案是: 用更多的索引。通过增加新的补充索引来反映新近的修改,而不是直接重写整个倒排索引。每一个倒排索引都会被轮流查询到,从最早的开始查询完后再对结果进行合并。
- Elasticsearch 基于 Lucene, 这个 java 库引入了按段搜索的概念。 每一 段本身都是一个倒排索引, 但索引在 Lucene 中除表示所有段的集合外, 还增加了提交点的概念 —— 一个列出了所有已知段的文件
- 按段搜索会以如下流程执行:
- 新文档被收集到内存索引缓存
- 不时地, 缓存被提交
(1) 一个新的段—一个追加的倒排索引—被写入磁盘。
(2) 一个新的包含新段名字的 提交点 被写入磁盘
(3) 磁盘进行 同步 — 所有在文件系统缓存中等待的写入都刷新到磁盘,以确保它们被写入物理文件- 新的段被开启,让它包含的文档可见以被搜索
- 内存缓存被清空,等待接收新的文档
- 当一个查询被触发,所有已知的段按顺序被查询。词项统计会对所有段的结果进行聚合,以保证每个词和每个文档的关联都被准确计算。 这种方式可以用相对较低的成本将新文档添加到索引。
- 段是不可改变的,所以既不能从把文档从旧的段中移除,也不能修改旧的段来进行反映文档的更新。 取而代之的是,每个提交点会包含一个 .del 文件,文件中会列出这些被删除文档的段信息。
- 当一个文档被 “删除” 时,它实际上只是在 .del 文件中被 标记 删除。一个被标记删除的文档仍然可以被查询匹配到, 但它会在最终结果被返回前从结果集中移除。文档更新也是类似的操作方式:当一个文档被更新时,旧版本文档被标记删除,文档的新版本被索引到一个新的段中。 可能两个版本的文档都会被一个查询匹配到,但被删除的那个旧版本文档在结果集返回前就已经被移除。
6.4 近实时搜索
-
随着按段(per-segment)搜索的发展,一个新的文档从索引到可被搜索的延迟显著降低了。新文档在几分钟之内即可被检索,但这样还是不够快。磁盘在这里成为了瓶颈。提交(Commiting)一个新的段到磁盘需要一个 fsync 来确保段被物理性地写入磁盘,这样在断电的时候就不会丢失数据。 但是 fsync 操作代价很大; 如果每次索引一个文档都去执行一次的话会造成很大的性能问题。
-
我们需要的是一个更轻量的方式来使一个文档可被搜索,这意味着 fsync 要从整个过程中被移除。在 Elasticsearch 和磁盘之间是文件系统缓存。 像之前描述的一样, 在内存索引缓冲区中的文档会被写入到一个新的段中。 但是这里新段会被先写入到文件系统缓存—这一步代价会比较低,稍后再被刷新到磁盘—这一步代价比较高。不过只要文件已经在缓存中,就可以像其它文件一样被打开和读取了。
-
Lucene 允许新段被写入和打开—使其包含的文档在未进行一次完整提交时便对搜索可见。这种方式比进行一次提交代价要小得多,并且在不影响性能的前提下可以被频繁地执行。
-
在 Elasticsearch 中,写入和打开一个新段的轻量的过程叫做 refresh 。 默认情况下每个分片会每秒自动刷新一次。这就是为什么我们说 Elasticsearch 是 近 实时搜索: 文档的变化并不是立即对搜索可见,但会在一秒之内变为可见。
-
这些行为可能会对新用户造成困惑: 他们索引了一个文档然后尝试搜索它,但却没有搜到。这个问题的解决办法是用 refresh API 执行一次手动刷新: /users/_refresh
-
尽管刷新是比提交轻量很多的操作,它还是会有性能开销。当写测试的时候, 手动刷新很有用,但是不要在生产环境下每次索引一个文档都去手动刷新。 相反,你的应用需要意识到 Elasticsearch 的近实时的性质,并接受它的不足。
-
并不是所有的情况都需要每秒刷新。可能你正在使用 Elasticsearch 索引大量的日志文件,你可能想优化索引速度而不是近实时搜索, 可以通过设置 refresh_interval , 降低每个索引的刷新频率
{ "settings": { "refresh_interval": "30s" } }
-
refresh_interval 可以在既存索引上进行动态更新。 在生产环境中,当你正在建立一个大的新索引时,可以先关闭自动刷新,待开始使用该索引时,再把它们调回来
# 关闭自动刷新 PUT /users/_settings { "refresh_interval": -1 } # 每一秒刷新 PUT /users/_settings { "refresh_interval": "1s" }
7. Kibana
- Kibana 是一个免费且开放的用户界面,能够让你对 Elasticsearch 数据进行可视化,并让你在 Elastic Stack 中进行导航。你可以进行各种操作,从跟踪查询负载,到理解请求如何流经你的整个应用,都能轻松完成。
- 下载地址:https://artifacts.elastic.co/downloads/kibana/kibana-7.8.0-windows-x86_64.zip
-
解压缩下载的 zip 文件
-
修改 config/kibana.yml 文件
# 默认端口 server.port: 5601 # ES 服务器的地址 elasticsearch.hosts: ["http://localhost:9200"] # 索引名 kibana.index: ".kibana" # 支持中文 i18n.locale: "zh-CN"
-
Windows 环境下执行 bin/kibana.bat 文件
-
通过浏览器访问 : http://localhost:5601,即可进入控制台页面
以上是关于Elasticsearch-尚硅谷(7. 进阶-下)学习笔记的主要内容,如果未能解决你的问题,请参考以下文章
Elasticsearch - 尚硅谷(2. Elasticsearch 安装)学习笔记